
AD-A279 151

USING THE CoRE REQUIREMENTS
METHOD WITH ADARTS"

SPC-93091-CMC

DTIC
VERSION 01.00.05 ELECTEi

MRH19MAY 12199411MARCH 1994 SI GD

94-13724

94 5 05 166

REPORT DOCUMENTATION PAGE 0o.m App7oved
I OMB No. 0704-0188

Ptjblic reporting burden for this collision of information is estimated to average 1 hour per response, including the time for reviewing instructions. searching existing data sources.
gathering and maintaining the data needed, and oomplting and reviewing the collection of Inlormation. Send comments regarding this burden estimate or any other aspect of this

' i lk ection o= information, including suggestlonr tor reducng this burden to Washington Headquarters Services. Drectorate for Information Operations and Reports, 1215 Jefferson
Davis Hghway. Suite 1204, Ar#ngton, VA 22202-4302. end to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blanic) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

IMarch 1994 Technical Report
4. TIRTE AND SUBTITLE 5. FUNDING NUMBERS

Using CoRE Requirements Method with ADARTS

6. AUTHOR(s) H. Lykins, R. Kirk, D. Smith
Produced by Software Productivity Consortium under contract
to Virginia Center of Excellence G MDA972-92-J- 1018
7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Virginia Center of Excellence REPORTNUMBER

SPC Building SPC-93091-CMC,
2214 Rock Hill Road Version 01.00.03
Hemdon, VA 22070

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING /MONITORING

ARPA/SISTO AGENCY REPORT NUMER

Suite 400
801 N. Randolph Street
Arlington, VA 22203

11. SUPPLEMENTARY NOTES
The CoRE Guidebook is available from DTIC (ADA # 274691). The ADARTS Guidebook (SPC-
94040-CMC) may be obtained from Software Productivity Consortium by calling (703) 742-7211.

S12a. DISTRIBUTION / AVAILABIUTY STATEMENT 12b. DISTRIBUTION CODE

No Restrictions 1
13. ABSTRACT (Maximum 200 words)

This technical report explains how you can use the Ada-Based Design Approach for Real-Time
Systems (ADARTSSM) to build a software design that satisfies software requirements specified
using the Consortium Requirements Engineering Method (CoRE). ADARTS is a widely accepted
object-oriented method for system and software development that results in a robust design that is
well documented, meets timing requirements, can withstand change, and contains many reusable
components. CoRE is a new object-oriented approach to software requirements engineering that
results in requirements that are precise, testable, complete, consistent, and resilient in the face of
change. This report is a supplement to the ADARTS Guidebook (Version 2) and the CoRE
Guidebook (Version 1) and discusses: developing a CoRE requirements specification for use with
ADARTS; deriving an ADARTS process structure from CoRE requirements; combining ADARTS
processes and objects derived from CoRE requirements into an ADARTS software architecture
design; and taking advantage of CoRE's precision in the ADARTS process structuring, class
structuring, and software architecture design activities.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Object-oriented requirements and design, concurrency, real-time software, 182
ADARTS, CoRE, formal specification, evaluation criteria 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT

_ OF REPORT OF THIS PAGE OF ABSTRACT UL
Unclassified Unclassified Unclassified _

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18
298-102

USING THE CoRE REQUIREMENTS
METHOD WITH ADARTS"

SPC-93091-CMC Accesion For

NTIS CRA&I
DTIC TAB i
Unannounced El

Justification

By.-VERSION 01.00.05 Distribution I

M ARCH 1994 Availability Codes
Avail and/or

Dist Special

Howard Lykins j
Richard A. Kirk lo/

Doug Smith
Produced by the

SOFTWARE PRODUCTIVITY CONSORTIUM SERVICES CORPORATION
under contract to the

VIRGINIA CENTER OF EXCELLENCE
FOR SOFTWARE REUSE AND TECHNOLOGY TRANSFER

SPC Building
2214 Rock Hill Road

Herodon, Virginia 22070
(703) 742-7211

Co•rigt Q 1994, Software Productivity Consortium Services Carporation, Herndon•VginiL Perniseionto use, copy, modify, and
distribute this material for any purpose and without fee is hereby granted consistent with 48 CFR 227 and 252 and provided that
the above copyright notice appears in all copies and that both this copyright notice and this permion notice appear in supporting
doummentation. This material is based in pat upon work sponsored by the Advanced Research Projects Agency under Grant
#MDA972-92-J-101& The content does not necessarily reflect the position or the policy of the U. S. Government, and no official
endorsement should be inferred. The name Software Productivity Ccnsortium shall not be used in advertising or publicity pertaining
to this material or otherwise without the prior written permtison of Software Productiity Consortiun Inc. SOFTWARE
PRODUCTIVITY CONSORTIUM, INC. AND SOFIWARE PRODUCTIVITY CONSORTIUM SERVICES
CORPORATION MAKE NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABI=TY OF THIS
MATERIAL FOR ANY PURPOSE OR ABOUT ANY OTHER MATIER, AND THIS MATERIAL IS PROVIDED
WMIHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.

ADARTS 4 is a service mark of the Software Productivity Consortium Limited Partnership.
Teamwork, teamwork/Ada, teamwork/SA, and teanmwork/RT are registered trademarks of Cadre Technologies, Inc.

CONTENTS

ACKNOWLEDGMENTS ... xvii

EXECUTIVE SUMMARY ... Axi

1. INTRODUCTIO1N ... I

1.1 Purpose of This Technical Report ... 1

1.2 Intended Audience ... 1

1.3 How to Use This Technical Report .. 1

1.4 Organization of This Report ... 2

1.5 lypographic Conventions ... 2

2. OVERVIEW OF DESIGN APPROACH 3

2.1 Th e Design Approach .. 3

2.2 Term inology ... 4

2.3 Necessary Changes to Process Structuring 4

2.4 Necessary Changes to Class Structuring 6

2.5 Optional Enhancements .. 6

2.6 Concerns to Remember ... 6

2.6.1 CoRE Variables and ADARTS Approximations 6

2.6.2 CoRE Events and ADARTS Stimuli 8

2.6.3 Use of the CoRE Value Functions 8

2.6.4 Use of the CoRE NAT Relation ... 9

2.6.5 Dealing With Delay and Error .. 10

2.7 N otation .. 10

3. BUILDING A CORE SPECIFICATION FOR USE WITH ADARTS 13

3.1 Inverting IN and OUT Value Functions .. 13

3.2 Frequency of Events .. 14

3.3 Error and D elay ... 15

3.4 CORE Requirements Artifacts Not Used 16

iii

Contents

4. PROCESS STRUCTURING .. 17

4.1 Deriving the Initial Process Architecture 18

4.1.1 Stim uli .. 20

4.1.2 Input and Output Variables ... 22

4.1.2.1 Active D evices ... 23

4.1.2.2 Periodic Devices ... 24

4.1.2.3 Passive Devices .. 25

4.1.3 Monitored and Controlled Variables 26

4.1.4 REQ Value Functions .. 28

4.1.4.1 Event Tables ... 29

4.1.4.2 Condition and Selector Tables 30

4.1.5 M ode M achines ... 31

4.1.6 Term s ... 31

4.1.7 Determining the Need for Internal Data Storage 32

4.2 Specifying Process Behavior ... 33

4.2.1 Process Logic ... 33

4.2.1.1 Stimulus-Response Notation 33

4.2.1.2 Process Logic Example .. 35

4.2.1.3 Rationale ... 36

4.2.2 Process Interfaces ... 36

4.2.3 Requirements Traceability .. 37

4.3 Process Clustering ... 37

4.3.1 Temporal Cohesion .. 37

4.3.1.1 Asynchronous Temporal Cohesion 38

4.3.1.2 Periodic Temporal Cohesion 39

4.3.2 Sequential Cohesion ... 41

4.3.3 Functional Cohesion ... 42

iv

Contents

4.4 Process Communication and Synchronization 43

4.5 Evaluation Criteria ... 44

4.5.1 Evaluating Process Behavior Specifications 44

4.5.2 Evaluating Timing Characteristics 45

4.5.3 Correctness .. 46

4.6 Future W ork .. 48

5. CLASS STRUCTURING .. 49

5.1 D eriving Classes ... 49

5.1.1 Device Interface Classes ... 49

5.1.2 External System Classes .. 50

5.1.3 Data Abstraction Classes ... 50

5.1.4 Data Collection Classes .. 52

5.1.5 State Transition Class .. 54

5.1.6 User Interface Class ... 55

5.1.7 Computation Class .. 57

5.2 Abstract Interface .. 57

5.2.1 Abstract State .. 58

5.2.2 O perations ... 59

5.2.3 Invariants .. 59

5.2.4 Preconditions and Postconditions .. 59

5.3 Evaluation Criteria ... 61

5.3.1 Completeness Criterion-Strong Form 62

5.3.2 Completeness Criterion-Weak Form 63

5.3.3 Determinism Criterion ... 64

5.3.4 Initial State Criterion .. 65

5.3.5 Consequence Criterion ... 65

5.3.6 Correctness Analysis ... 67

V

Contents

5.3.7 Error A nalysis .. 69

5.4 Future W ork .. 69

6. SOFTWARE ARCHITECTURE DESIGN 71

6.1 Merging Dynamic and Static Views ... 71

6.1.1 General Procedure .. 71

6.1.2 Example of Updating Process Logic 72

6.2 Resource M onitors ... 72

6.3 Evaluation Criteria ... 72

6.4 Relating Delay and Error ... 74

6.4.1 Examples of Requirements ... 74

6.4.2 Example of Design and Informal Evaluation 75

6.5 Future W ork .. 78

APPENDIX- HAS BUOY CASE STUDY 79

App.1 HAS Buoy Problem Statement .. 79

App.1.1 Introduction ... 79

App.1.2 Software Requirements .. 80

A pp.1.3 Reports ... 80

App.1.4 Software Timing Requirements 81

A pp.1.5 Priorities .. 81

App.1.6 Error Detection .. 81

App.1.7 HAS Buoy Device Specifications 81

App.1.7.1 W ind Sensors ... 82

App.1.7.2 Temperature Sensors ... 82

A pp.1.7.3 Radio .. 82

App.1.7.4 Buoy Panel ... 84

App.1.7.5 Omega Navigation System 84

App.2 CoRE Requirements Specification ... 85

vi

Contents

App.2.1 CoRE Information Model ... 86

App.2.2 Context Diagram ... 87

App.2.3 Dependency Graph ... 87

App.2.4 Monitored and Controlled Variable Definitions 88

App.2.5 Input and Output Variables .. 90

App.2.6 Event and Term Definitions .. 92

App.2.7 classSystemModeSpecification 95

App.2.7.1 M ode M achines ... 95

App.2.7.2 IN and OUT Relations ... 96

App.2.8 classAir_Interface ... 96

App.2.8.1 IN and OUT Relations ... 96

App.2.8.2 NAT Relations .. 97

App.2.9 classWaterInterface ... 97

App.2.9.1 IN and OUT Relations ... 99

App.2.9.2 NAT Relations .. 99

App.2.10 classBuoyLocation ... 99

App.2.10.1 IN and OUT Relations .. 99

App.2.10.2 NAT Relations ... 100

App.2.11 classVesselInterface .. 100

App.2.11.1 REQ Relations 102

App.2.11.2 IN and OUT Relations .. 104

App.2.11.3 NAT Relations ... 106

App.2.12 classLightInterface .. 106

App.2.12.1 REQ Relations ... 106

App.2.12.2 IN and OUT Relations .. 106

App.2.13 classSailorInterface .. 107

App.2.13.1 IN and OUT Relations .. 108

vii

Contents

App.2.14 Other Data Dictionary Entries.................................... 108

App.3 Process Structure ... 110

App.3.1 Initial Process Architecture Diagram................................ 110

App.3.2 Initial Process Behavior Specifications............................... 112

App.3.2.1 Determine WindDirection 112

App.3.2.2 Determine Wind Magnitude 112

App.3.2.3 DetermineAir-Temperature 112

App.3.2.4 DetermineWaterTemperature 113

App.3.2.5 DetermineBuoy Location 114

App.3.2.6 Determine Emergency_Button................................ 114

App.3.2.7 DetermineVessel Request 115

App.3.2.8 GeneratePeriodic Repors 115

App.3.2.9 ProcessRedLight Request.................................. 115

App.3.2.lO Monitor-Air-TemperatureSensors-Multiple.................... 116

App.3.2.11 Monitor WindSensors..................................... 117

App.3.2.12 Monitor-Water-TemperatureSensorsMultiple.................. 117

App.3.2.13 Monitor LocationCorrectionData........................... 118

App.3.2.14 MonitorOmega, System Input 118

App.3.2.15 MonitorIncoming_ Radio Messages 118

App.3.2.16 Monitor ButtonIndicator 120

App.3.2.17 Set OutgoingRadio Message Value........................... 120

App.3.2.18 Set Light SwitchValue 120

App.3.2.19 Determine System Mode 120

App.3.2.20 GenerateHistory Report 121

App.3.2.21 GenerateShipDetailed Report.............................. 122

App.3.2.22 Generate Airplane DetailedReport 122

App.3.2.23 Send OutgoingRadio Message.............................. 123

Viai

Contents

App.3.2.24 Control LightSwitch...................................... 123

App.3.2.25 DetermineResetSOS..................................... 124

App.3.2.26 Determine LightCommand................................. 124

App.3.2.27 Determine OmegaError 125

App.3.3 Process Architecture Diagram..................................... 125

App.3.4 Process Behavior Specifications.................................... 125

App.3.4.1 Process_30_Second-Interrupt................................. 127

App.3.4.2 MonitorTemperature....................................... 127

App.3.4.3 Determine BuoyLocation 128

App.3.4.4 GeneratePeriodic Reports 129

App.3.4.5 Process ReceiverInterrupt 130

App.3.4.6 MonitorLmergencyButton 131

App.3.4.7 Ransmit-Reports .. 132

App.3.4.8 GenerateDetailedReports 132

App.4 Class Structure... 133

App.4.1 AirjTemperature-Sensor Device Interface Class....................... 134

App.4.1.1 Calculate Air Temperature Operation 135

App.4.2 Omega,_NavigationSystem Device Interface Class..................... 136

App.4.2 ' Get OmegaInput Operation................................. 136

App.4.3 Water TemperatureSensor Device Interface Class..................... 137

App.4.3.1 Read Water Temperature Sensor Operation..................... 138

App.4.4 Wind-Sensor Device Interface Class 138

App.4.4.1 ReadWind Sensor Input Operation 139

App.4.5 ASCII-Report Data Abstraction Class............................... 140

App.4.5.1 Set-Report Operation....................................... 141

App.4.5.2 Get Next Page Operation 142

App.4.6 BuoyLocation Data Abstraction Class.............................. 143

ix

Contents

App.4.7 SOS-Report Data Abstraction Class 144

App.4.7.1 SetLatitude Operation .. 145

App.4.7.2 ASCIIFormat Operation 145

App.4.8 Air-TemperatureReadings Collection Class 146

App.4.8.1 RecordAirTemperature Operation 147

App.4.8.2 Compute AveragedAirTemperature Operation 148

App.4.9 SystemMode State Transition Class 148

App.4.9.1 EmergencyButtonPressed Operation 149

App.4.9.2 Reset-SOS Operation .. 149

App.4.9.3 Current Mode Operation 150

App.4.10 BuoyLocation Computation Class 150

App.4.10.1 EstimateBuoyLocation Operation 151

App.4.11 WaterTemperature Computation Class 152

App.4.11.1 CalculateWaterTemperature Operation 152

App.4.12 Wind Computation Class ... 153

App.4.12.1 CalculateWindDirection Operation 154

App.4.12.2 CalculateWindMagnitude Operation 155

App.4.13 Trigonometric-Functions Computation Class 156

LIST OF ABBREVIATIONS AND ACRONYMS 159

REFERENCES .. 161

x

FIGURES

Figure 1. ADARTS Software Development Activities 3

Figure 2. Schematic for Initial Process Architecture 5

Figure 3. Flow of Values Through Software ... 13

Figure 4. Illustration of Deriving Period or Maximum Delay for INs .. 15

Figure 5. Illustrating Dependency Between Error and Delay 15

Figure 6. General Scheme for Initial Process Architecture 19

Figure 7. IN, Process Example .. 22

Figure 8. OUT. Process Example .. 22

Figure 9. Periodic and Demand INs Processes Example 23

Figure 10. IN' for mon..EmergencyButton .. 24

Figure 11. INs Process Activated by a Device Interrupt 24

Figure 12. IN' for monBuoyLocation .. 24

Figure 13. INs Process Activated Periodically ... 25

Figure 14. INt Process Example .. 27

Figure 15. OUTt Process Example .. 27

Figure 16. Rationale for Mapping to Initial Process Architecture 28

Figure 17. General Scheme for Initial Process Architecture 29

Figure 18. REQ' Function for conRedLight .. 30

Figure 19. REQ Process ProcessRedLight.Request 30

Figure 20. REQ Processes Supporting REQRelationfor conReport 31

Figure 21. Periodic REQ Process ... 31

Figure 22. HAS Buoy Mode Machine ... 32

Xi

Figure 23. HAS Buoy Mode Process .. 32

Figure 24. MonitorLocation CorrectionData Process Behavior 38

Figure 25. MonitorlIncomingRadio Messages Process Behavior 38

Figure 26. Process ReceiverlInterrupt Process Behavior 39

Figure 27. Process Behavior for a 20-Second Periodic Process 41

Figure 28. Process Behavior for a 10-Second Periodic Process 41

Figure 29. Process Behavior for the Clustered Periodic Process 41

Figure 30. SetLightSwitchValue Process Behavior 42

Figure 31. ControlLightSwitch Process Behavior 42

Figure 32. Process ReceiverInterrupt Process Behavior 42

Figure 33. GenerateHistoryReport Process Behavior 43

Figure 34. GenerateShipDetailed Report Process Behavior 43

Figure 35. GenerateDetailedReports Process Behavior 43

Figure 36. Examples of Device Interface Classes 51

Figure 37. Example of Data Abstraction Classes 53

Figure 38. Example of Data Abstraction With Multiple Atomic Values 53

Figure 39. Collection Class for Air Temperatures 54

Figure 40. Example of State Transition Class ... 56

Figure 41. Example of User Interface Classes ... 56

Figure 42. Partial Software Architecture Diagram Illustration 73

Figure 43. Process Structure for Digital Speedometer 75

Figure 44. CoRE Information Model .. 87

Figure 45. Context Diagram ... 87

Figure 46. Dependency Graph ... 88

Figure 47. Mode Machine for modeSystemMode 96

Figure 48. IN Relation for monResetSOS .. 96

Figure 49. IN' for mon.ResetSOS ... 96

Ai|

Figures

Figure 50. IN Relation for monAirTemperature 97

Figure 51. IN' for monAirTemperature 97

Figure 52. IN Relation for monWind 98

Figure 53. IN' for montWind . .. 98

Figure 54. IN Relation for monWaterTemperature................................... 99

Figure 55. IN' for monWaterjemperature 99

Figure 56. IN Relation for monW BuoymLocation 100

Figure 57. IN' for monBuoyLocation 100

Figure 58. IN Relation for monOmegayo Error .. 101

Figure 59. IN' for monOmegaError 102

Figure 60. REQ Relation for conReport .. 103

Figure 61. IN Relation for monVesselRequest 104

Figure 62. IN' for monVesselRequest 104

Figure 63. OUT Relation for con_Report .. 105

Figure 64. OUTt' for con_Repo rt 105

Figure 65. NAT Relation for con_ Reportjiming 106

Figure 66. REQ Relation for conRedpLight 106

Figure 67. IN Relation for monLighCommand..................................... 107

Figure 68. IN' for monLightCommand 107

Figure 69. OUT Relation for conmRednLight ... 107

Figure 70. OUT' for conRed _Light . .. 107

Figure 71. IN Relation for mon Emergencyh. Button.................................... 108

Figure 72. IN' for montEmergencyButton 108

Figure 73. HAS Buoy Initial Process Architecture Diagram 111

Figure 74. Process Logic for DetermineWindDirection 112

Figure 75. Process Logic for DetermineWindMagnitude 113

Figure 76. Process Logic for DetermineAirTemperature 113

xiii

Figures

Figure 77. Process Logic for DetermineWater.Temperature 113

Figure 78. Process Logic for Determine BuoyLocation 114

Figure 79. Process Logic for DetermineEmergencyButton 114

Figure 80. Process Logic for DetermineVesselRequest 115

Figure 81. Process Logic for GeneratePeriodicReports 116

Figure 82. Process Logic for ProcessRedLightRequest 116

Figure 83. Process Logic for MonitorAir TemperatureSensorsMultiple 117

Figure 84. Process Logic for Monitor WindSensors 117

Figure 85. Process Logic for Monitor Water TemperatureSensorsMultiple 118

Figure 86. Process Logic for MonitorLocationCorrectionData 118

Figure 87. Process Logic for Monitor Omega SystemjInput 119

Figure 88. Process Logic for MonitorIncomingRadioMessages 119

Figure 89. Process Logic for MonitorButtonIndicator 120

Figure 90. Process Logic for SetOutgoing_RadioMessageValue 121

Figure 91. Process Logic for SetLightSwitchValue 121

Figure 92. Process Logic for DetermineSystemMode 122

Figure 93. Process Logic for Generate HistoryReport 122

Figure 94. Process Logic for Generate Ship DetailedReport 123

Figure 95. Process Logic for Generate AirplaneDetailed Report 123

Figure 96. Process Logic for Send OutgoingRadioMessage 124

Figure 97. Process Logic for ControlLightSwitch 124

Figure 98. Process Logic for DetermineResetSOS 124

Figure 99. Process Logic for DetermineLightCommand 125

Figure 100. Process Logic for DetermineOmegaError 125

Figure 101. HAS Buoy Process Architecture Diagram 126

Figure 102. Process Logic for Process_30_Second.Interrupt 128

Figure 103. Process Logic for MonitorTemperature 129

xiv

Figures

Figure 104. Process Logic for DetermineBuoyLocation 129

Figure 105. Process Logic for GeneratePeriodicReports 130

Figure 106. Process Logic for ProcessReceiverInterrupt 131

Figure 107. Process Logic for Monitor-EmergencyButton 132

Figure 108. Process Logic for Transmit-Reports .. 133

Figure 109. Process Logic for GenerateDetailedReports 134

xv

TABLES

Table 1. Derivation of Classes and Objects ... 7

Table 2. Derived Functions .. 9

Table 3. Example of IN' Function ... 14

Table 4. Characterization of Processes in Initial Mapping 19

Table 5. Identifying CoRE Events for ADARTS 21

Table 6. Deriving Processes From Condition Tables 31

Table 7. Term Defined by an Event .. 32

Table 8. Term Defined by Conditions .. 32

Table 9. Process Stimuli .. 34

Table 10. Activities Encapsulated by Device Interface Classes 50

Table 11. Examples of Abstract State ... 58

Table 12. Examples of Invariants ... 59

Table 13. Preconditions and Postconditions for Record Air Temperature Operation 60

Table 14. Example of Bounding Error .. 61

Table 15. Example of Updating Process Logic .. 72

Table 16. Environmental Variables ... 74

Table 17. Report Notation .. 81

Table 18. Wind Sensor Specifications ... 82

Table 19. Temperature Sensor Specifications ... 82

Table 20. Radio Device Specification ... 84

Table 21. Buoy Panel Device Specification .. 84

Table 22. Omega Device Specification .. 84

Xwi

ACKNOWLEDGMENTS

The authors and the Consortium wish to thank those who contributed to the development of this tech-
nical report:

"* James Kirby, Jr. who helped develop an early version of the ideas in this report and who
reviewed the draft of the final version.

" Other Consortium staff who reviewed the draft of this report: Lisa Finneran, Kent Johnson,
and Steve Wartik. Their comments have helped to make this report what it is.

" Other members of the ADARTS team (Christine Ausnit and Mike Cochran), the CoRE team
(Stuart Faulk, Assad Moini, and Skip Osborne), plus Ron Damer and Neil Burkhard, all of
whom have reviewed and commented on the design approach in this report.

" Jim Sutton, Mike Sullivan, and other members of the Lockheed C-130J software team, the first
industrial project to use CoRE and ADARTS for software development.

"* Mary Mallonee for technical editing; Debbie Morgan for entering the markups to the draft
document; and Betty Leach and Tina Medina for clean proofing the final document.

xvii

Acknowledgments

This page intentionally left blank

xvii

EXECUTIVE SUMMARY

The purpose of this technical report is to explain how to take requirements specified using the
Consortium Requirements Engineering (CoRE) method and develop a software design using the heu-
ristics and guidelines from the Ada-based Design Approach for Real-Time Systems (ADARTS4D).
This technical report is the result of more than a year of research, development, and pilot project activ-
ity directed toward integrating CoRE and ADARTS. It is part of an ongoing effort to integrate and
improve the products of the Software Productivity Consortium.

Combined Benefits of Both Methods

CoRE is a new approach to software requirements engineering that results in requirements that are
precise, testable, complete, consistent, and resilient in the face of change. ADARTS is a widely
accepted object-oriented method for system and software development that results in a robust design
that is well documented, meets timing requirements, can withstand change, and contains many reus-
able components. By using ADARTS and CoRE together, you obtain the benefits of both methods.

Increased Precision of Software Design

A major benefit of using ADARTS witih CoRE is the increased precision of ADARTS work products.
The precision of CoRE's behavioral model will enable you to precisely specify the behavior of design
components, facilitating verification and minimizing the risk of misunderstanding by implementors
and customers. This technical report contains optional enhanced verification guidelines for two
ADARTS software design activities, based on the increased precision.

Similarity of Concepts

ADARTS and CoRE have many concepts in common, eliminating the need for a "paradigm shift"
when moving from rmquirements specification to design. Software engineers have an easier time tran-
sitioning from requirements analysis to design if the two activities are based on similar concepts. Be-
r-Ause both ADARTS and CoRE use object-oriented concepts, the transition from one activity to
another is smoother than it often has been in the past.

Pilot Project Validation

The first pilot project to use ADARTS with CoRE, Lockheed's avionics redesign for the C-130J, was
conducted in parallel with the development of this report. This pilot provided useful feedback to the
Consortium, resulting in improved guidelines for CoRE and for the use of ADARTS with CoRE.

What Is In This Technical Report

This technical report explains how to develop an ADARTS software design that satisfies a CoRE
requirements specification. It is intended to be used as a supplement to the Consortium Requirements

Ax

Exwcutive Summary

Engineering Guidebook (version 01.00.09) and ADARTS Guidebook (version 02.00.13) and provides
guidance in two areas:

1. ADARTS software design guidelines that must change to be used with CoRE requirements

2. ADARTS software design guidelines that should change to benefit from the increased
precision provided by CoRE requirements

Guidelines in the second category are optional; engineers do not have to follow them to use ADARTS
with CoRE.

Where CoRE has no impact on ADARTS design activities, engineers will use the heuristics in the
ADARTS Guidebook.

Uo

1. INTRODUCTION

1.1 PURPOSE OF THIS TECHNICAL REPORT

This technical report explains how you can use the Ada-Based Design Approach for Real-Time
Systems (ADARTSM) to build a software design to satisfy software requirements specified using the
Consortium Requirements Engineering Method (CoRE). This report is intended to be used as a sup-
plement to theADARTS Guidebook, version 02.00.13 (Software Productivity Consortium 1991), here-
in called the ADARTS Guidebook, and Consortium Requirements Engineering Guidebook, version
01.00.09 (Software Productivity Consortium 1993), herein called the CoRE Guidebook, and discusses
the following:

"* Developing a CoRE requirements specification for use with ADARTS

"* Deriving an ADARTS process structure from CoRE requirements

"* Deriving an ADARTS class structure from CoRE requirements

"* Combining ADARTS processes and objects derived from CoRE requirements into an
ADARTS software architecture design

"* Taking advantage of CoRE's precision in the ADARTS process structuring, class structuring,
and software architecture design activities

1.2 INTENDED AUDIENCE

This technical report is directed at technologists and engineers who are very familiar with the
ADARTS and CoRE methods. This technical .port does not attempt to explain either ADARTS or
CoRE; it assumes that you are comfortable with each.

1.3 HOW TO USE THIS TECHNICAL REPORT

Section 3 provides a brief supplement to the CoRE Guidebook and discusses how you apply CoRE
to build a software requirements specification for ADARTS. Subsequent sections supplement chap-
ters in Volume 1 of the ADARTS Guidebook. Each major subsection in this technical report identifies
the section or subsection of the ADARTS Guidebook that it supplements. This technical report
provides guidance in two areas:

1. Areas in which design activities must change to be used with CoRE requirements

2. Areas in which design activities should change to benefit from the increased precision
provided by CoRE requirements

If

1. Introduction

Where CoRE has no impact on ADARTS design activities, you should follow what is stated in the
ADARTS Guidebook. This technical report addresses ADARTS software design activities. It does not
discuss system-level design.

1.4 ORGANIZATION OF THIS REPORT

This technical report is organized as follows:

" Introduction. Sections 1 and 2 introduce the report and provide an overview of how you use
ADARTS with CoRE. Section 2 contains important information about the assumptions and
basic approach to design used in this report.

"* Requirements Specification. Section 3 describes how you use CoRE to build a software
requirements specification for use with ADARTS.

" Process Structuring. Section 4 describes how you derive ADARTS processes from CoRE
requirements and how you take advantage of CoRE's precision to make clustering decisions
and to specify and evaluate the process architecture.

"• Class Structuring. Section 5 describes how you derive ADARTS classes and objects from CoRE
requirements and how you take advantage of CoRE's precision to specify and evaluate the
classes.

" Software Architecture Design. Section 6 describes how you combine a process architecture and
class structure derived from a CoRE requirements specification into an ADARTS software
architecture design.

" Case Study. The Appendix provides a case study that illustrates the guidelines in Sections 3,
4, 5, and 6.

1.5 TYPOGRAPHIC CONVENTIONS

This report uses the following typographic conventions:

Serif font General presentation of information.

Italicized serif font Mathematical expressions and publication titles.

Boldfaced serif font Section headings and emphasis.

Boldfaced italicized serif font Run-in headings in bulleted lists and, in the Appendix,
minor subsections.

Typewriter font ADARTS class specifications.

{ }............................. Definition of a set or bag.

S Optional items (zero or one).

I............................... Separator for a list of alternatives.

2

2. OVERVIEW OF DESIGN APPROACH

This section provides an overview of the approach described in this report to building an ADARTS
software design from CoRE requirements and documents the fundamental assumptions underlying
the approach. You should read this section before reading subsequent sections.

2.1 THE DESIGN APPROACH

Figure 1 illustrates the ADARTS approach to designing software from requirements expressed in
CoRE. The activities and dependencies between activities are the same as in ADARTS. After com-
pleting your requirements specification, you perform the ADARTS process structuring and class
structuring activities. These two activities can be performed concurrently or sequentially in arbitrary
order.

Requirements l e Architecture

SSignificant Change • Minor Change

Figure 1. ADARTS Software Development Activities

In process structuring, you develop the dynamic view of the software architecture, concentrating on
concurrency, sequencing, and timing. First, you follow the guidelines in this report to create the initial
process architecture. You then follow the ADARTS Guidebook to cluster processes. In class structur-
ing, you develop the static view of the software, concentrating on encapsulation, information hiding,
and planning for change. This report tells you how to map CoRE requirements to ADARTS classes
and objects. In software architecture design, you merge the results of process and class structuring into
a unified software design. In Ada-based architecture design, you choose constructs in the Ada
programming language for each element of the software architecture design.

This report provides guidance in the following areas: aspects of ADARTS that must change to create
a design to satisfy CoRE requirements and aspects that should change to benefit from the precision

3

2. Overview of Design Approach

of CoRE requirements. Guidelines in the second category are optional; you do not have to follow
them, but you will have a more precise design if you do. The optional guidelines are enhancements
to ADARTS facilitated by the precision of CoRE. The only identified changes to software architecture
design are enhancements. There are no changes to Ada-based architecture design discussed in this
report.

2.2 TERMINOLOGY

The CoRE behavioral model is in terms of four types of variables (monitored, controlled, input, and
output) and four relations between them (required [REQ], nature [NAT], input [IN], and output
[OUT]). The CoRE relations other than NAT contain value functions that usually appear as tables
in a CoRE specification. The CoRE value functions specify one of the following mappings:

"* Monitored variables to controlled variables (REQ relation)

"* Monitored variables to input variables (IN relation)

"* Output variables to controlled variables (OUT relation)

CoRE augments value functions with nonzero bounds on error and delay, which makes REQ, IN, and
OUT relations rather than functions. Although the CoRE Guidebook uses the term "value function"
only in reference to the REQ relation, this report uses the term "CoRE value function" to refer to
tables defining any of the three mappings described above.

2.3 NECESSARY CHANGES TO PROCESS STRUCTURING

The ne,'ssary changes to ADARTS process structuring are:

1. The requirements artifacts you use to develop the initial process architecture

2. The heuristics you use to determine the need for data storage

The guidelines for data storage are necessary because a CoRE requirements specification contains
references to past values of variables instead of defining data stores. Guidelines for process clustering
and evaluation of the process architecture do not have to change from ADARTS, although this report
describes optional enhancements to both steps.

Figure 2 shows the structure of the initial process architecture. Processes in the initial process
architecture are motivated by events in the CoRE specification. The mapping of requirements to the
initial process architecture described in this report serves twc purposes: it is straightforward and is
intended to allow you to take full advantage of potential concurrency. The final process architecture,
which results from your application of the clustering criteria, will almost certainly have fewer
processes. The following discussion explains the significance of each kind of process:

"* An input stimulus (IN.) process responds to an input stimulus and retrieves the value of an
input variable from a device.

"* An input translation (IN,) uses the input variable retrieved by the INs process to approximate
the value of the corresponding monitored variable. The tilde (" ") signifies that the value

4

2. Overview of Design Approach

Output Variable
Input Variable to Device

from device Input Stimulus

IN Monitored Data OUT5BDaialatoa eUI

Input Monitore Output
Vrale Varal Variable

/ TI•. -Term or REQ •""

Monitored -Term/Mode Controlled
Variable Variable

Figure 2. Schematic for Initial Process Architecture

computed by the process is an approximation. The approximation of the monitored variable
is used by Term, Mode, or REQ processes that need it.

" There is one Term process for each term defined using a CoRE event. A Term process receives
an input, which is an approximation of a monitored variable or term, or a mode and determines
if the event defining the term has occurred.

"* There is one Mode process for each mode machine in the CoRE specification. A Mode
process uses an input, which is an approximation of a monitored variable or term, or a mode
of another mode machine and determines if a mode transition has occurred.

" A REQ process uses an input, which is an approximation of a monitored variable or term, or
a mode of a mode machine and updates its approximation of the controlled variable. A
stimulus/response thread that causes a visible change will always go through a REQ process.

" An OUTt process uses an approximation of a controlled variable and generates the
appropriate value of an output variable. Again, stimulus/resnonse threads that cause visible
change will always go through an OUTt process.

" At the required times, an OUT5 process sends output variable value(s) to the associated
device. Stimulus/response threads that cause visible change will always go through an OUTt
process.

The purpose of IN, and INt processes is to respond to changes in input variables. Term and mode
processes are motivated by events referenced by mode machine and term definitions. REQ processes
are motivated by changes in monitored variables and the need to change the corresponding controlled
variable. OUT, and OUTt to set output variables so that the corresponding controlled variables are
set properly.

A CoRE specification does not include requirements for internal data storage. Instead, it references
past values of variables that the designer translates into a need for data storage. Figure 2 illustrates
that INt and Term processes may save approximations of monitored variables and terms for future use.

2I Overview of Design Approach

2.4 NECESSARY CHANGES TO CLASS STRUCTURING

As with process structuring, the necessary changes to class structuring are limited to the requirements
artifacts that you map to classes and objects. Guidelines for abstract interfaces, the generalization/spe-
cialization structure, the dependency graph, the information hiding structure, and evaluation criteria
do not have to change, although this report describes optional enhancements for the abstract interface
and evaluation criteria. Table 1 summarizes how you map CoRE requirements to ADARTS classes
and objects.

2.5 OPTIONAL ENHANCEMENTS

This report discusses a number of optional enhancements to the process structuring, class structuring,
and software architecture design activities. All of these enhancements are facilitated by the precision
of CoRE requirements and are motivated by the desire to maintain CoRE's level of precision during
design. You do not have to take advantage of the enhancements discussed in this report. However,
your design will benefit from precise specification if you do so. The benefits of precision include:

"* Lack of ambiguity, which decreases the probability of misunderstanding by implementors and
reviewers

"* Improved guidelines for work product evaluation, leading to greater confidence in the design
and reducing the probability of errors.

Enhancements to process structuring include improved guidelines for periodic temporal clustering
and evaluation criteria. Enhancements to class structuring include improved guidelines for work prod-
uct evaluation. Precise notations for specifying process and class behavior are introduced in the
appropriate sections. These notations permit enhanced evaluation criteria for the software architec-
ture design activity as well. In addition, software architecture design is enhanced with guidelines for
relating delay and error.

2.6 CONCERNS TO REMEMBER

This section discusses a number of concerns you should keep in mind while applying the guidelines
in this technical report. These concerns, along with the overviews of the process and class structuring
activities, are the motivation for the design approach described in this technical report.

2.6.1 CoRE VARIABLES AD ADARTS APPROXIMATIONS

The design approach in this report is based on software approximations of environmental quantities.
The monitored and controlled variables in a CoRE specification, as well as terms and modes, repre-
sent quantities in the environment. The only variables that the software can observe and set directly
are input and output variables. For example, software cannot directly observe a monitored variable,
such as the level of fuel in a tank. However, it is possible for software to approximate the value of a
monitored variable, deriving the approximation from input variable(s) retrieved from the hardware.
For example, the software can approximate the level of fuel in a tank by reading from an input device
the amount of pressure exerted by the fuel or the position of a float.

6

2. Overview of Design Approach

Table 1. Derivation of Classes and Objects

Kind of Class CoRE Element Basis of Operation Objects Created

Device Hardware devices (or Reading input variables One for each device
Interface groups of similar devices) Writing output variables

described by input and Possibly approximating
output relations monitored variables and
IN and OUT Relations deriving output variables

CoRE boundary classes

External Requirements for which Controlling and One for each external
System you will use external communicating with an system

systems external system
IN and OUT Relations

CoRE Boundary Classes

Data Monitored and controlled Reading, comparing, and One for each variable or
Abstraction variables setting internal term

Input and output variables approximations of values
and performing

Terms mathematical operations
Expressions in REQ, IN, on the approximations
and OUT tables
CoRE boundary, term, and
mode classes

Collection Monitored and controlled Operations on a set of One for each variable or
variables values (e.g., Create, term defined as a
Input and output variables Destroy, Add, Delete, collection of values

Iterate, Search, Compare,
Terms Retrieve, Copy, etc.)
Expressions in REQ, IN,
and OUT tables
CoRE boundary and term
classes

State Each unique mode An operation for each One for each state
Transition machine CoRE event that causes a transition class

CORE mode classes mode change, or One for each modeoperations for groups of machine if identical mode
events machines mapped to the

same class
User Interface Look and feel Operations for acquiring One or more for each user

requirements information from and interface class
IN and OUT relations providing information to

human users
CoRE boundary classes

Computation Tables: REQ, IN, OUT One for each way in which One for each computation
relations, term definitions the computation can be class if there is no internal

Complex expressions invoked state, possibly multiple
within tables objects if there is an

internal state
CoRE boundary, term, and
mode classes

7

2. OverviAw of Daisn Approach

It is essential that you remember the difference between a monitored variable and the software's
approximation of it. In almost all cases, the software's approximation will differ from the monitored
variable because of the inaccuracy inherent in computer arithmetic and because the monitored vari-
able can be changing while the software is approximating its value. The same observation applies to
terms, modes, and controlled variables. Because they are ultimately defined from monitored vari-
ables, the software can only approximate their values. This technical report denotes an approximation
with the tilde (" -"). For example, - monFuelLevel would be the software's approximation of the
monitored variable monFuelLevel. It is strongly recommended that you use this notation or a
similar notation to distinguish approximations from the real variables.

In CoRE, delay and error values are used with the ideal functions to describe behavior. In the case
of REQ, they describe the tolerable behavior and, in that context, can be called tolerances. In the case
of IN and OUT, they describe the worst case delay and error that the software must assume during
design and, in that context, describe the precision of the devices. In developing an ADARTS design,
you should convince yourself that your software sets the values of controlled variables within the toler-
ance and delay specified in REQ. To do this, you will have to consider the delay and imprecision of
input and output devices and delay and error introduced by software.

2.6.2 CoRE EVENTS AND ADARTS STIMULI

All CoRE events signify changes in environmental variables. Environmental variables include time,
a monitored variable. You use CoRE events to determine the need for ADARTS processes and the
stimuli that cause them to respond. This is one of the more difficult aspects of design and one place
for you to apply engineering judgment. The frequency of the event, behavior of the device, and (some-
times) the maximum rate of change for the monitored variables can all influence the designer's choice
of ADARTS stimuli, message communication, and process logic.

In contract to CoRE events, ADARTS events may be external events or timer events. External events
signify hardware interrupts, and timer events signify the passage of time. The difference between
CoRE events and ADARTS events is that CoRE events refer to changes in environmental quantities
and ADARTS events refer to changes that the software can observe directly.

Section 4 uses the term "unique event." When a CoRE event table is used to define a value function,
there are usually several event expressions. Often, these event expressions have annotations, indicat-
ing that the behavior associated with the event applies only in a specific mode or when a specific condi-
tion holds. Regardless of the annotations, you should treat multiple event expressions in an event table
that describe the same event as a single, unique event. For example, "@T(mon Temperature < 0)"
describes the same event as "@F(monTemperature > 0)." For purposes of ADARTS process struc-
turing, the expressions "@T(mon_Temperature<0)" and "@T(monTemperature<O) when
inmode(modeNormal)" initiate the same stimulus-response thread, although the latter expression
identifies a qualifying condition for responding to the event. The process logic of the process respond-
ing to an event with a qualifying condition must specify how behavior differs under each different
condition.

2.6.3 USE OF THE CoRE VALUE FUNCTIONS

The value function of the CoRE IN relation maps monitored variables to input variables, and the value
function of the OUT relation maps output variables to controlled variables. In the design approach

8

2. Overview of Design Approach

described in this report, the inverse of these functions is necessary. Given an input variable, your
design will approximate the corresponding monitored variable, and given an approximation of a con-
trolled variable, your design will calculate the appropriate value of an output variable. The notation
IN' is used in this report to refer to the inversion of the IN value function with monitored variables
replaced by their approximations. The notation OUT' is used in this report to refer to the inversion
of the OUT value function, with controlled variables replaced by their approximations.

The value function of the CoRE REQ relation maps monitored variables and/or terms to a controlled
variable. This value function need not be inverted for design, but the value function expressed in terms
of ADARTS objects (i.e., software variables) is useful for ADARTS process and class structuring. The
notation REQ' is used in this report to refer to the REQ value function, with monitored and controlled
variables and terms replaced by their approximations.

REQ', IN', and OUT' are functions derived from REQ, IN, and OUT, respectively, and are used in
this report to describe guidelines in process structuring, class structuring, and software architecture
design. Table 2 summarizes the purposes of these derived functions.

Thble 2. Derived Functions

Derived
Relation Purpose Function Purpose
REQ Relates monitored vari- REQ' Function that returns an approximation of a con-

ables to controlled vari- trolled variable given monitored variable and/or
ables term approximation(s).

IN Relates monitored vari- IN' Function that returns an approximation of a
ables to input variables monitored variable given an input variable

approximation.
OUT Relates output vari- OUT' Function that returns an approximation of an

ables to controlled vari- output variable given controlled variable approxi-
ables mation(s).

The derived functions are useful during ADARTS process structuring when identifying stimuli that
cause processes to respond and when identifying process logic. For example, REQ_forýcon Report
describes which report is generated when the event Periodic_60_Second occurs, depending upon the
current mode. A process is added to the ADARTS initial process architecture diagram named Gener-
atePeriodic Reports that responds to eventPeriodic_60_Second by generating the appropriate re-
port. Derived functions are also used during class structuring to describe the abstract interface of
classes.

Inverting value functions is not always trivial, so you may already have documented the inversion of
IN and OUT value functions in the CoRE specification. It is not necessary to document REQ', IN',
and OUT' as work products. However, both process structuring and class structuring use the inversion
of IN and OUT value functions. Therefore, in the nontrivial cases, make sure that you invert the
functions once to save time and avoid confusion before starting process and class structuring.

2.6.4 USE OF THE CoRE NAT REnATON

The NAT relation documents constraints placed on the software system by the external environment
and constraints on monitored and controlled variables. You should consider NAT when you are

9

2. Overview of Design Approach

defining the behavior of processes and classes. For example, in process structuring, you can use NAT
to determine the frequency of a timer event based on knowledge about the maximum rate of change
of a monitored variable and the required tolerance of a controlled variable. In class structuring, you
can use NAT to determine parts of the abstract interface, such as assumptions, usage constraints, and
undesired events.

2.6.5 DEALING WrIH DELAY AND ERROR

The IN and OUT relations capture the worst case delay and error associated with input/output
hardware. The REQ relation captures the maximum tolerance for error in a controlled variable and
the initiation delay and completion deadline for setting a controlled variable's value. To meet require-
ments, the software must set the value of a controlled variable within the time interval defined by the
initiation delay and completion deadline, and the value must be within the specified tolerance.

The easiest approach to dealing with delay and error is to consider them separately, dealing with delay
during process structuring and error during class structuring. In process structuring, you should esti-
mate the execution of each process and ensure that every controlled variable is set between the initia-
tion delay and completion deadline, taking into consideration the delay imposed by hardware devices.

In class structuring, you should record the maximum error associated with operations and ensure that
total error imposed by software will not cause the value of a controlled variable to exceed the tolerance
in REQ. To do this, you should consider each class and operation needed to set a controlled variable
from the monitored variable. This includes retrieving an input variable, using it to approximate a mon-
itored variable, using that approximation to approximate the controlled variable, determining the
appropriate value of the output variable, and sending the output variable value to the device. The total
of the maximum error associated with each operation, combined with the device errors, must not
exceed the error bound specified in the REQ relation.

If this is not feasible, you must consider the relationship between delay and error and take into account
the rate of change of the monitored variable. This is discussed in more detail in Sections 3.3 and 6.4.

2.7 NOTATION

This section describes the notation used in many of the examples. The notation used in this report has
the advantage of precision, which benefits you as described in Section 2.5 However, a specific notation
is not critical to the design approach described in this document. Wherever possible when discussing
requirements, this report follows the notation of the CoRE Guidebook. When dealing with design,
this report follows the notation of the ADARTS Guidebook.

For elements of the design, the tilde denotes approximations of the environmental variables. For
example, " -mon BuoyLocation" represents an ADAMTS design element that approximates the
monitored variable monBuoyLocation.

REQ', IN', and OUT' are notations representing modified CoRE value functions and are defined in
Section 2.6.3.

The subscripts s and t identify specific types of processes in the initial process architecture and are
discussed in Section 2.3.

10

2. Overview of Design Approach

This report uses concepts and notation from set theory to introduce more precision in the descriptions
of ADARTS work products. Braces are used to itemize the elements of a set. The empty set is denoted
by "{f}." Where S, S1, and S2 are sets or bags1, this report uses the following standard operations from
set theory:

"* S UNION S2 denotes the set composed of all elements in either $l or S2 or both.

"* Si INTERSECT S2 denotes the set composed of all elements in both Si and S2.

"* S1 - S2 is the set formed by removing from S1 all elements in Si INTERSECT S2 .

"* SIZE(S) denotes the number of elements in S.

In addition, this report introduces the following nonstandard operations:

"* OLDEST(S) denotes the oldest (i.e., least recently added) element of S.

"* SUM(S) is the arithmetic sum of the elements in S. SUM(S) is undefined if the elements of
S are not numeric.

The following notation is used to define the content of a set, where it is not feasible to itemize the
elements. Where i is a placeholder, D(i) is an expression involving i, and F(i) is some mathematical
function of i, the set {i: D(i): F(i)} is the set of all values F(i) such that D(i) holds. The placeholder
i has no meaning outside the braces; it is similar in that respect to a local variable declared in a subrou-
tine. D(i) defines the set from which i is taken; applying F to each value in this set produces the set
defined by the expression. Unless otherwise noted, placeholders i, j, k, 1, m, and n denote integers;
other letters denote real numbers. For example:

"* {i: i>0: i2 } = {1, 4, 9, ...} is the set of squares of the positive integers.

"f {i: i>0: i} = {1, 2, 3, ...J is the set of positive integers.

"* {i: O<i:5: i) = {1,2,3,4,5} is a finite set with five elements.

A similar notation is used to define operations on a set without defining the set separately. For
example:

"* (SUM i: 0<i s4: i2) = 1+4+9+16=30 is the sum of the squares of the first four integers.

" ROUND[(SUM (i:O •i5 5:monAir Temperature(t-10i)) /6] is the average of the past six
readings of air temperature, where the readings are taken at 10-second intervals and the most
recent reading just occurred.

Logical conjunction, disjunction, and negation are denoted by AND, OR, and NOT, respectively.

The following notation is used to specify the abstract interfaces of classes. Where P is an expression,
ERROR(P) in a postcondition means that an operation on a class returns an error flag or raises an
exception signifying P. Where X is a name referenced in a precondition, UpdatedX is used in a post-
condition to denote the value of X between completion of the operation and the next change to X. X
and UpdatedX will usually refer to the abstract state.

1. Abag is a set in which elements can be repeated. Many collections of data stored by software are bags rather than sets.

1!

2. Overview of Demsip Approach

This page intentionally left blank

12

3. BUILDING A CoRE SPECIFICATION FOR USE
WITH ADARTS

This section highlights the features of CoRE that deserve special attention when ADARTS is the
companion design method. These suggestions should make the design activity simpler and reduce the
need to iterate back to requirements specifications.

Section 3.1 explains how the inverse of a value function for device behavior is accomplished and why
it is important. Section 3.2 discusses various aspects of events and what must be specified to complete
a design. Section 3.3 makes a simplifying assumption about error and delay. However, if this
assumption cannot be made, see Section 6.4 for a related discussion. Some features of CoRE that were
not used in the case study are discussed in Section 3.4.

3.1 INVERTING IN AND OUT VALUE FUNCTIONS

The design approach discussed in this report involves estimating the value of environmental variables.
The software estimates the monitored value from an input value, calculates an estimate of the desired
controlled value, then determines an appropriate output value to achieve the desired behavior.

Figure 3 illustrates this flow of values through the software. IN' is the inversion of the IN value
function, with monitored variables replaced by the corresponding approximations. For example, if the
IN value function maps monWaterTemperature to inWater Temperature.Sensor, the IN' function
will map inWater.TemperatureSensor to - monWaterTemperature. The REQ' function is the
REQ value function, with monitored and controlled variables replaced by their approximations. The
OUT' function is the inversion of the OUT value function, with controlled variables replaced by their
approximations.

- ------------- Requirements - - ------------- - - - - - ---

Design

Monitored • Input - Monitored - Terms/. ~ Controlled Output • Controlled
Variable Variable Variable Modes Variable Variable VariableKIN -.- INi- -REQ -I- OUT' OUT]

REQ

Figure 3. Flow of Values Through Software

The CoRE Guidebook mentions inverting a value function (see Section 11.3.3 of the CORE
Guidebook) but does not suggest that it is necessary. In software design, you will use the IN', REQ',

13

3. BuildinS a CoRE Speification for Use With ADARTS

and OUT' functions rather than the value functions of IN, REQ, and OUT It does not matter whether
you derive IN', REQ', and OUT' during requirements analysis or as the first activity in ADARTS de-
sign. What does matter is that you have them available for use in process structuring and class struc-
turing. If you derive these functions as part of design, you should do so before you begin process
structuring or class structuring. Otherwise, you will have to derive them twice, resulting in unnecessary
work and an increased probability of a mismatch between processes and objects. The mismatch would
have to be resolved during software architecture design.

Table 3 contains an example of an IN value function and the corresponding IN' function in which IN
describes a device that modifies two input variables: one to indicate the sign and the other, its unsigned
value.

Thble 3. Example of IN' Function

Function Domain Range Definition

IN Value Function mon.Temp in-Sign, in-Value inSign=sign(monTemp)
in.Value=log(monTemp)

IN' Function inSign, in Value -mon Temp -mon_.Temp=inSign* 10in-vaue

3.2 FREQUENCY OF EVENTS

To build an ADARTS design, a frequency profile must be specified for each CoRE event. The designer
derives ADARTS external events, timer events, message communication, and process logic based on
the expected throughput driven by event frequency and tolerable delay. Performance analysis is based
on event frequency and tolerable delay.

You should explicitly state a frequency for each event before beginning process structuring. For
periodic events, the frequency can be expressed in the event expression (@T(monTime mod 10)) or
as part of an associated variable definition (see Section 4.2.1 of the CoRE Guidebook). For
on-demand events (usually in an event table), the maximum frequency (minimum time between
events) is required. Other characteristics, such as mean time between events, can also be helpful but
are not required. The frequency of events related to the behavior of input and output devices (e.g.,
device interrupts) must also be specified.

The rest of this section ex,lains why this frequency information is important by looking at how
software gets the value of an input variable. Even if an event is not periodic, there is a window of
opportunity for the software to use an input variable before it changes. This time interval is illustrated
in Figure 4.

Stepping through the illustration chronologically: (1) an event occurs; (2) an initiation delay
(optionally zero) is required before the input variable can change; (3) the input variable must change;
(4) the window of opportunity begins for the software to use the variable; (5) the next event (for this
event class) occurs; (6) the initiation delay expires, (7) ending the window of opportunity for using the
value of the variable resulting from the first change.

If the software polls the input variable, this window of opportunity suggests a maximum interval
between successive timer events to ensure that no change in value is missed. If the software responds
to an interrupt, this window of opportunity suggests how quickly an interrupt must be processed.

14

3. Building a CoRE Specification for Use With ADARTS

S maximum delay maximum delay

itiation variable initiation variable
delay changes dela ' anges

event Qnextevent
(I Period or minimum time between events e

I Window of opportunity I

Sfor IN, (D

Figure 4. Illustration of Deriving Period or Maximum Delay for INs

Without knowing the minimum time between events, there is no way for the designer to allocate timing
behavior to the INs process. Other constraints may require stricter constraints on INs, but the designer
must still verify that INs acquires the input variable before it is lost.

3.3 ERROR AND DELAY

A key benefit of ADARTS is the separation of activities for designing the dynamic and static views of
the software. If the design decisions in each activity depended on each other, this benefit would be
essentially lost. Ideally, you will be able to deal with delay in process structuring and error in class
structuring. This is possible if there is no dependency between error and delay or if the dependency
is not strong. However, error and delay can be mutually dependent. When they are dependent, two
possibilities are to:

" Make cursory analyses of error and delay during class structuring and process structuring,
respectively. Conduct the complete analysis in software architecture design (see Section 6.4)
and iterate to previous activities if necessary. This does leave the designer more flexibility in
choosing a design along with the more complex analysis.

" Derive independent functions of error and delay. Most of this report assumes that the error
and delay functions are independent, whether as specified by CoRE or derived before
attempting an ADARTS design.

Figure 5 illustrates a simple dependence between error and delay. The line between points b and c
represents the potential relationship between error and delay. Acceptable (REQ) or actual
(IN/OUT/NAT) behavior lies below the diagonal line. To deal with error and delay independently
during design, error and delay must be specified independently. In the case of REQ, values of error

Error

b - -

a4-

d ~ Delay

Figure 5. Illustrating Dependency Between Error and Delay

15

3. BIN a CoRP specification for Use With ADAR•S

(a) and delay (d) must be selected so that if the software meets both tolerances independently, it meets
the more lenient dependent tolerances. In the case of input devices (IN/OUT) and other behavior
(NAT), worst case behavior must be assumed: maximum error (b) and maximum delay (c). Again, if
the software meets timing constraints, assuming worst case behavior in both error and delay, it will
meet the more lenient dependent tolerance.

3.4 CoRE REQUIREMENTS ARTIFACTS NOT USED

The case study does not use initiation and termination events (see Section 4.2.1 of the CoRE
Guidebook) or sustaining conditions (see Section 4.3.1 of the CoRE Guidebook). This report does
not make any recommendations on using these requirements artifacts during design.

16

4. PROCESS STRUCTURING

The ADARTS process structuring activity allows you to capture a dynamic software design that shows
how processes interact to produce responses from stimuli. A process has its own thread of control that
executes concurrently with other processes in the system. Concurrency and timing issues can be
addressed in part by analysis of the system's processes and their interactions with each other and with
the environment.

ADARTS software design heuristics, including process and class structuring, are based on the use of
real-time structured analysis (RTSA) for specifying software requirements. This section explains how
to derive an ADARTS process structure from a CoRE software requirements specification while
limiting impact on the ADARTS process structuring activity as defined for RTSA. Additionally, this
section describes how to maintain the higher degree of precision provided by CoRE by expressing
process behaviors in terms of events to which a process must respond and the sequence of actions
associated with each event (the use of this notation is optional).

When developing a process structure from an RTSA specification, the first step is to map elements
of the RTSA specification to an "initial" (or "preliminary") process architecture. The initial process
architecture is intended to provide the opportunity for maximum concurrency without regard for the
inherent overhead, such as interprocess communication and context switching. The intent is to allow
the designer to apply the ADARTS process clustering heuristics unmodified, regardless of the form
in which the software requirements have been specified. The approach described in this report
concentrates on this first activity-mapping elements of a CORE specification to an initial process ar-
chitecture. The initial process architecture provides a basis upon which ADARTS process clustering
heuristics can be applied. During process clustering, you reduce the number of processes so that the
advantages of concurrency, scheduling flexibility, arid maintenance are balanced with pe.formance
requirements and complexity.

This section is not meant to replace the process structuring section (Section 8) of the ADARTS
Guidebook, it is meant to supplement that section when you are using CORE to specify software re-
quirements. For example, this section does not describe the use of entity modeling during process
structuring (Section 8.5 of the ADARTS Guidebook), which does not imply that entity modeling
should not be used during process structuring because it is not part of CoRE.

When using a CoRE specification as the front end to ADARTS, you will derive the process
architecture from the CoRE behavioral model, including:

"* Variables (monitored, controlled, input, and output) and terms

"* Relations (REQ, IN, OUT, NAT)

This section is divided into a number of subsections describing how the use of a CoRE specification
affects an individual step of the ADARTS process structuring activity:

17

4. Pmcem Structuring

" Deriving an ADARTS initial process architecture from a CoRE specification (see Section 4.1)

"* Developing process behavior specifications and maintaining the degree of precision provided
by CoRE (see Section 4.2)

* Applying ADARTS process clustering criteria iteratively to consolidate processes (see
Section 4.3)

"* Identifying process communication and synchronization (see Section 4.4)

"* Analyzing the design using the evaluation criteria (see Section 4.5)

Section 4.6 describes possible areas of future work.

4.1 DERIVING THE INITIAL PROCESS ARCHITECTURE

When performing the ADARTS process structuring activity, you first map requirements artifacts to
an initial process architecture and then cluster (or combine) processes to reduce complexity and the
overhead introduced by large numbers of concurrent processes. The ADARTS initial process architec-
ture is a snapshot of the process architecture taken immediately after mapping from a requirements
specification but before process clustering begins, This section describes how to map from the ele-
ments of a CoRE software requirements specification to the set of processes in the ADARTS initial
process architecture. Use this section with Section 8.3 of the ADARTS Guidebook. The objectives of
this mapping are as follows:

"• To provide an initial process architecture that:

- Isolates potentially concurrent activities

- Captures finite state machines

- Identifies the need for data storage

- Captures the dynamic characteristics of hardware devices with which the software
must interact

"* To maintain the degree of precision provided by CoRE

" To allow the designer to apply the ADARTS process clustering heuristics unmodified (see
Section 8.11 of the ADARTS Guidebook), regardless of the form in which the software
requirements have been specified

In ADARTS, a process represents a sequential thread of execution that detects and reacts to a
stimulus. Section 4.1.1 describes the basis of the initial mapping - how to identify these stimuli from
events in a CoRE model. Events of interest for the initial mapping are related to the following CoRE
artifacts:

"* Input and output variables (see Section 4.1.2)

"* Monitored and controlled variables (see Section 4.1.3)

18

4. Process Structuring

"* REQ value functions (see Section 4.1.4)

"* Mode machines (see Section 4.1.5)

"* Terms (see Section 4.1.6)

In addition, the initial process architecture must specify the need for data storage. Section 4.1.7
describes how to identify data stores.

Figure 6 illustrates the general scheme for the initial mapping, where parallelograms represent
processes, arrows between processes represent data flow, and arrows attached to data stores represent
recording or usage of approximations of monitored variables. Figure 6 illustrates the same flow of data
as illustrated in Figure 3, except requirements have been allocated to processes. The ,i•tial process
architecture indicates only data flow and data dependencies (e.g., INt processes depend on INs pro-
cesses to supply the values of input variables), not necessarily message communications, which will
be identified after process clustering.

InputStimulus

Output.
Input. Data Variable

~riarla

V riab lo e I , Moitre Storag e OUT,
INs Variable

Monitored / U £

r F• €
ariable £

InPULOutput
Variable -Variable

- Control4led OT
I, Temo REQ _ ,7 OUT t/ -ModeTem

-Monitored Md

Variable

Figure 6. General Scheme for Initial Process Architecture

Table 4 characterizes the kinds of processes in the ADARTS initial process architecture. Section 4.1

describes the mapping in more detail.

Table 4. Characterization of Processes in Initial Mapping

lype of ADARTS Basis for Process
Process Purpose Inputs Outputs Behavior

Input Variable To acquire the Hardware interface Input variable Frequency and
(INs) value of an input with input device device information

variable from a related to input
device variable

Monitored lb approximate a Values of one or Approximation of Inversion of an IN
Variable (INt) monitored variable more input a monitored value function

from input variables variable
variable(s)

19

4. Proces Structuring

Thble 4, continued

Type of ADARTS Basis for Process
Process Purpose Inputs Outputs Behavior

Mode To execute a finite Approximations of Current operating Mode machine
state machine one or more mode

monitored
variables and/or
terms

Term Tb calculate the Approximations of Approximation of Term definition
value of a term one or more term
based on the monitored
occurrence of an variables and/or
event terms

REQ lb approximate the Approximations of Approximation of REQ' (the REQ
value of a one or more a controlled value function
controlled variable monitored variable expressed in terms

variables and/or of variable
terms approximations,

see Thble 2)
Controlled To calculate an Approximation of Output variable The inversion of an
Variable (OUTt) output variable one or more OUT value

from the controlled function
approximation of variables
controlled
variable(s)

Output Variable To submit the value Output variable Hardware interface Frequency and
(OUTS) of an output with output device device information

variable to a device related to output
variable

Before mapping to an initial process architecture, you should specify the IN', OUT', and REQ'
derived value functions as described in Section 2.6.3. The IN' derived value function identifies how
the software can approximate the value of a monitored variable given the value of an input variable.
The OUT' derived value function identifies how the software can set the value of a controlled variable
using output variables. The REQ' derived value function describes the required behavior of the soft-
ware in terms of approximating the value of a controlled variable given the approximations of one or
more monitored variables or terms. Throughout this section, inverted IN and OUT value functions
are referenced using the notation IN' and OUT' for the purpose of brevity.

4.1.1 STIMUi

In ADARTS, a process represents a sequential thread of execution that detects and reacts to a
stimulus. Processes in the initial process architecture are derived from events described in the artifacts
of a CoRE behavioral model. Stimuli in an ADARTS design are design artifacts that indicate the
detection of CoRE events.

20

4. Procems Structuring

A periodic stimulus may appear in a number of different forms in an ADARTS design:

"* A periodic event triggered internally by a timer, which may be implemented by hardware or
software

"* An event triggered by an external device that happens to occur on regular intervals

"* A message passed between processes that happens te occur on regular intervals because the
originating process responds to a periodic stimulus by passing a message

An aperiodic stimulus may appear in the following forms in an ADARTS design:

"* An event triggered by an external device that does not occur on regular intervals

"* A message passed between processes that does not occur on regular intervals because the
originating process responds to an aperiodic stimulus by passing a message

In a CoRE specification, events are occurrences of a change in a conditional value. Events take the
form of requirements that must be satisfied either periodically or upon demand (i.e., asynchronously).
When analyzing events in a CoRE model to identify stimuli for ADARTS processes, be sure to only
consider distinct events (see Section 2.6.2). Sets of events that are not distinct can be considered the
same event for the purposes of ADARTS process structuring. Table 5 identifies possible sources of
asynchronous and periodic events of interest to ADARTS in a CoRE behavioral model and includes
examples of each.

Table 5. Identifying CoRE Events for ADARTS

Indicators of CoRE Events
CoRE Artifacts Periodic Asynchronous

Event tables defining value @T(a function of time), e.g., @T(condition) or @F(condition),
functions @T[(monTime MOD 10 seconds) e.g., @F(inInput..Variable = 0)

=0]

Timing requirements or Periodic scheduling constraints Demand scheduling constraints
timing behavior associated imply periodic events of a given fre- indicate asynchronous events that
with controlled variables (or quency (typically indicated by condi- should be identified in the REQ
their corresponding REQ tion or selector tables). relation (defined by an event table),
relations) e.g., @T(monMonitoredVariable

= 0)

Device information Devices that periodically produce Active devices (i.e., asynchronous,
associated with input or software inputs or consume software interrupt-driven devices)
output variables (or their outputs
corresponding IN and OUT
relations)

Passive (i.e., continuous) devices may indicate either periodic or
asynchronous events, depending upon the software's need to retrieve
inputs or produce outputs.

The behavior of the REQ process may be used to drive the events and message decisions outward
toward the IN, and OUTs processes that interact with devices (see Figure 6). An event in REQ' may
occur upon a change in the approximation of a monitored variable. But for the purpose of reducing

21

4. Process Structuring

communication, the logic of the IN, and INt processes involved in the approximation of the monitored
variable may be modified to limit the frequency with which they respond. For example, if an INs pro-
cess periodically samples an input variable and passes its value to an INt process, then the INt process
need not react unless it detects a change in the approximation of the monitored variable. Equivalently,
the sampling rate of the INs process may be decreased such that it detects changes in the values of input
variables more efficiently (i.e., its period may be reduced based on known characteristics of a moni-
tored variable, such as those defined in NAT relations). The logic of the REQ process need not be
concerned about detecting a change in the approximation of the monitored variable; this occurrence
is assumed upon receipt of the value of an approximation of a monitored variable.

Events in a CoRE behavioral model are used to identify stimuli in an ADARTS initial process
architecture and, therefore, the processes that respond to stimuli. Sections 4.1.2 through 4.1.6 de-
scribe how to generate an initial process architecture from the artifacts of a CoRE model according
to the indicators described in Table 5.

4.1.2 INPUT AND OUTPuT VAuRuBs

The mapping of CoRE input and output variables to processes in the initial process architecture is
based on the need to retrieve or produce data. The guidelines in this section are similar to the guide-
lines in the ADARTS Guidebook for identifying processes that interact with devices (see Section 8.4
of the ADARTS Guidebook).

Processes that retrieve input variables are called INs processes. Processes that produce output
variables are called OUTs processes. The work performed by an INs or OUTs process is to respond
to a stimulus indicating the need to retrieve an input or produce an output. Figure 7 shows an example
of an INs process that responds to a device interrupt by sampling the value of an input variable and
forwarding it. Figure 8 shows an example of an OUTs process that responds to the receipt of an up-
dated output variable by submitting that variable to an output device, which uses the output variable
to modify a controlled variable.

event Device

in Input. IN inInput_ A-Process/_

Viriable- Variable-

Figure 7. IN, Process Example

Vdb Variable

Figure 8. OUTs Process Example

For each CORE input and output variable, begin by creating a process whose job is to react to a
stimulus by acquiring the value of an input variable from a device or submitting the value of an output
variable to a device. There are three kinds of devices that determine the stimuli that cause INs and
OUTs processes to respond:

22

4. Process Structuring

"* Active devices (see Section 4.1.2.1) signal interrupts when input variables have been updated
or when output variables should be produced by the software.

"* Periodic devices (see Section 4.1.2.2) produce input variables or consume output variables at
regular intervals.

"* Passive (or continuous) devices (see Section 4.1.2.3) produce input variables or consume
output variables transparently to the software (typically at very high periodic frequencies).

Input and output variable definitions should indicate whether input and output devices are active,
periodic, or passive. Use corresponding input variable definitions to identify the stimulus causing an
INs process to respond. Equivalently, use corresponding output variable definitions to identify the
stimulus causing an OUT, process to respond. For a process that interacts with an active device, the
stimulus is an external event (i.e., a device interrupt); for a process that interacts with a periodic de-
vice, the stimulus is a periodic event; and for a process that interacts with a passive device, the stimulus
will be identified later, based on the corresponding REQ value function (see Section 4.1.4).

Typically, each input variable and output variable maps to a single process that retrieves input or
produces output in response to receipt of a message or occurrence of a timer or external event (see
Section 4.1.1). Less frequently, an input variable or output variable will map to multiple processes,
e.g., one executing periodically and another executing upon demand (i.e., asynchronously). Figure 9
shows an example of two INs processes that react to different stimuli but sample the same input vari-
able. The process INs_Periodic samples inInput.Variable upon occurrence of the event
eventPeriodic_10_Second. The process INs_Demand process samples inInputVariable upon
receipt of Need.toSamplejnput.

event PeriodiclOSFxond I, s [in-lnput-

VariableV

inInput / A-Process
inlInput_ Variable ._

Demand

Need to- BProcess
Sample-Input

Figure 9. Periodic and Demand IN$ Processes Example

4.1.2.1 Active Devices

If a device signals an interrupt indicating the availability of an input variable (or the need to produce
an output variable), use an external event to activate the INs (or OUTs) process. Input and output vari-
able definitions should indicate the interrupt(s) signaled by active devices. Event/response pairs in an
event table defining the corresponding IN' or OUT' value function should indicate the required re-
sponses to device interrupts. For example, Figure 10 illustrates the IN' value function corresponding
to the active emergency button device in the Host-at-Sea (HAS) Buoy case study in the Appendix.

The events in Figure 10 are defined as follows:

23

4. Process Structuring

Event mon EmergencyButton
------------------- ------------------------
--------------- ------------------------------

event Button Indicator Set I "Pressed"
I i

event Button Indicator Reset 1 "Released"

Figure 10. IN' for monEmergencyButton

eventButtorn_Indicator_Set = @T(in_ButtonIndicator = 02#1xxxxxxx#-)

event_Button_Indicator_Reset = @T(inButtonIndicator = 92#Oxxxxxxx#0)

Figure 11 illustrates the resulting INs process activated by the interrupt from the emergency button.
The process MonitorButtonIndicator interfaces with the emergency button device by detecting the
interrupt Button Interrupt, sampling the input variable Button Indicator, and passing its value to
another process. In this case, you are really only concerned with eventButtonIndicatorSet because
there is no need to respond to the button being released. Therefore, the process logic could be
simplified and the amount of message communication could be reduced by ignoring the event
indicating that the button has been released.

Button
Interrupt

ButtonMonitor Button Indicator
Indicatoror(IN)I

Figure 11. INs Process Activated by a Device Interrupt

4.1.2.2 Periodic Devices

If a device periodically updates an input variable or periodically reads an output variable, use a timer
event with the same period as specified by the CoRE description of the device behavior. Later, when
fine-tuning the process architecture, you should consider whether all samples of the input and output
variables are of interest to the software. If not, you may decide to change the INs or OUTs process to
a demand-driven process or to reduce the frequency of its activation.

For example, Figure 12 illustrates the IN' value function corresponding to the Omega navigation
system in the HAS Buoy case study in the Appendix.

iiEvent : -mon .Buoy j.ocatlon
-- +

Latitude <= (Degrees <= MAX(<Latitude>in Omega.System.Input.Bytes 1&2, 359),
Minutes <= MAX(<Latitude>inOmega.SystemInput.Byte 3, 59),
Seconds <= MAX(<Latitude>in Omega System Input.Byte 4, 59) +

MAX(<Latitude>in Omega.SystemInput.Byte_5, 99)/100),event Periodic Longitude <= (Degrees <= MAX(<Longitude>in Omega.System Input.Bytes 1&2, 359),30Second Minutes <= MAX(<Longitude>inOmegaSystem Input.Byte_3, 59),
Seconds <= MAX(<Longitude>in OmegaSystemInput.Byte_4, 59) +

MAX(<Longitude>inOmegaSystemInput.Byte_5, 99) / 100)

Figure 12. IN' for monBuoyLocation

24

4. Process Structuring

The event in Figure 12, defined as follows, indicates that the approximation of the monitored variable
could change value periodically, at 30-second intervals, based on the update rate of the input variable
in Omega_SystemInput:

eventPariodic_30_Second = OT([mon-Time MOD 30 seconds] = 0)

Figure 13 illustrates a periodic INs process activated at the same frequency with which the input device
updates the value of its corresponding input variable. The process Monitor OmegaSystem Input in-
terfaces with the Omega system by sampling the input variable OmegaSystemInput periodically
upon occurrence of the timer event Time_30. The value of OmegaSystemInput is passed on to
another process.

Time 30 0__....• / Oega_
MonitorOmega System_

Omegaý ./S te nptN)LInut~
System (Iny)

Input

Figure 13. IN, Process Activated Periodically

You should try to synchronize the periodic intervals of IN, processes and input devices to minimize
the delay in which the software recognizes changes in the values of input variables. Equivalently, you
should try to synchronize the periodic intervals of OUTs processes and output devices. Without any
attempt at synchronization, the worst case scenario introduces a delay equal to the period.

4.1.23 Passive Devices

If a variable is produced or consumed continuously by a device (i.e., the device is passive) or upon
detection of a software-driven interrupt, the stimulus must be determined from REQ'. For an input
variable, identify the expressions in REQ' involving approximations of monitored variables calculated
from the input variable under consideration. For an output variable, identify the expressions in REQ'
involving approximations of controlled variables that affect the values of the output variable under
consideration.

For each event associated with the expressions, use the frequency profiles for the corresponding
events in the CoRE specification and allotted time for the value function to be evaluated to determine
how often the input variable must be sampled or the output variable must be produced. As a result,
you will either:

"* Use a periodic stimulus causing the input variable to be polled or output variable to be
produced at regular intervals.

" Use the receipt of a message from another process (as described in Section 4.1.4) if an input
variable must be retrieved or output variable must be produced upon demand by another part
of the software system.

Determining the ideal frequencies of periodic INs and OUT, processes that interface with passive
devices from a REQ value function is nontrivial. There are a number of requirements artifacts that
affect the frequency with which INs processes (and OUTs processes) should be activated:

* The frequency with which a device updates the value of an input variable and the tolerable
delay specified by relevant REQ relations. For example, assume a temperature sensor

25

4. Proce Stru•mting

measures air temperature every 10 seconds, with the first measurement taken at time to (i.e.,
the intervals of the process and the device are in phase). The periodic frequency of the corre-
sponding INs process and its synchronization with the device have an effect on the average and
worst case delay in the software recognizing updates to the input variable:

- If the device and the IN, process are in phase (i.e., the INs process takes its first sample
at or immediately after time to), a period of 10 seconds will provide the best average
and worst case delays possible. Increasing the INs process' sampling rate will not
reduce delay and could even increase it.

- If the device and the IN, process are not in phase, average and worst case delays are
functions of the period of the INs process and the difference between to and time that
INs takes its first sample. In this case, increasing the sampling rate of the INs process
will improve average and worst case delay, and a period of 10 seconds will provide a
maximum delay of 10 seconds.

NAT relations that specify the maximum rate of change of the monitored variable are
measured by an input variable. You may be able to determine the maximum necessary sam-
pling rate of the IN, process from the maximum rate of change of a monitored variable and
the accuracy requirements foi controlled variables affected by changes in a monitored vari-
able. For example, assume that an accuracy requirement for reporting speed is ± 0.5 mph and
there is a NAT relation stating that I A mph / A t I 1• 10 mph/s. Therefore, it takes at least 0.5/10
= 0.05 s for the car to change speed by 0.5 mph. So, the periodic sampling rate need not be
greater than 20 Hz in a perfect world. However, there is delay introduced by the software and
the devices it uses that must be factored into the sampling rate.

In the HAS Buoy case study, the REQ relation for the controlled variable con-Report (see
Section App.2.11.1) indicates that wind and temperature reports must be produced every 60 seconds.
Wind and temperature reports contain water temperature readings that must be accurate within a cer-
tain degree. Assuming that six samples of water temperature readings per minute are required to ob-
tain the required accuracy (as was assumed in the case study), use a periodic INs process activated
every 10 seconds (similar to the INs process in Figure 13).

It is possible for both periodic and asynchronous stimuli to activate the INs or OUTs processes that
interface with passive devices when the variable is indirectly involved in multiple REQ relations. In
this case, create two processes: one activated by a periodic event and one activated asynchronously
(as illustrated in Figure 9). It is also possible to determine the need from different REQ relations to
sample an input variable or to produce an output variable at different periodic intervals. In this case,
you may be able to use a single periodic stimulus occurring at the higher frequency.

4.1.3 MoNoIORED Am CONTROLLED VARI4 BLEs

For each monitored variable in a CoRE model, use the inverse of the IN value function, IN', to define
an INt process for each unique event (see Section 2.6.2) used in the function. Each INt process reacts
to a stimulus by changing the value of the approximation of a monitored variable. Use the IN' value
function to specify the approximation of a monitored variable from input variable(s) performed by
each INt process.

The inputs to an INt process are one or more input variables; the output is an approximation of a
monitored variable. Figure 14 shows an example of an INt process that responds to the receipt of either

26

4. Process Structuring

of two different input variables because two input variables are used in approximating a monitored
variable.

event Device_
Interrupt

in Input IN- in npuL
VariableI V"e - Monitored-

ria / Variable another

event Periodic
10.Second process

in Input IN, 2 in Input

Variable 2 Variable 2

Figure 14. INt Process Example

If time (e.g., "mon rTime") is a monitored variable in your CoRE behavioral model, you may choose
not to create an INt process if you intend to use your run-time system to determine "current time" and
to implement periodic behavior. Examine the physical description of the monitored variable to make
your decision.

For each controlled variable in a CoRE behavioral model, use the inverse of the OUT value function,
OUT', to define an OUTt process for each unique event used in the function. Each OUT1 process
reacts to a stimulus by determining what the value of an output variable should be. Use the OUT' value
function to specify the calculation of an output variable from controlled variable approximation(s).

The inputs to each OUTt process are approximations of one or more controlled variables; the output
is an output variable. Figure 15 shows an example where two OUTt processes are necessary because
two output variables are required to set the value of the controlled variable.

-con out.Output_ out-Output-

ControlledOT Variable 2 Variable 2

-conbl Vaial 2Ut1 zor-

Variable /

Figure 15. OUTt Process Example

It may be tempting to create a single process that performs the work of both the INs and IN1 processes,i.e., one that responds to a stimulus indicating the need to retrieve an input variable and translate it
into the approximation of a monitored variable (i.e., a single IN process instead of separate INs and
INt processes). Equivalently, the same temptation may exist to use a single process for translating anapproximation of a controlled variable into an output variable and sending the output variable to a
device (i.e., a single OUT process instead of separate OUTs and OUT1 processes). The rationale formaintaining this separation is illustrated in Figure 16, where the shaded ovals represent possibletemporal cohesion and the unshaded ovals represent sequential cohesion. It may seem unnecessaryto separate the IN io and INsl processes in Figure 16 because of the obvious sequential cohesion.

However, there may also be temporal cohesion between pairs of processes, such as INs..1 and IN.. 2 ,

27

4. Procu Stucturing

for which a greater benefit is obtained by clustering. Therefore, by adhering to the recommended
mapping, you allow more flexibility when making tradeoffs during process clustering (see Section 4.3).

PossibleSTemporal
~Cohesion

Figure 16. Rationale for Mapping to Initial Process Architecture

In Figure 16, temporal cohesion exists between IN,_._ and INs_2 if Event -1 = Event_2 or may exist
if both events are periodic. Temporal cohesion may also exist between INL_. and INt_2 if temporal
cohesion exists between INs..1 and INs_.2. Sequential cohesion always exists between the pairs (INsI,
INt_l) and (INs_2 and INt_2).

An example of when it is beneficial to maintain the separation of IN, and INt processes is when the
approximation of a controlled variable performed by the INt process is time consuming and the IN,
process must be able to handle bursts of interrupts. In this case, the INs process is allowed to handle
the bursts of interrupts and the INt process can perform calculations when the activity of the IN,
process has slowed down.

4.1.4 REQ VALUE FUNCrIONS

Sections 4.1.2 and 4.1.3 described how to identify IN., INt, OUTs, and OUTt processes. This set of
processes is roughly the equivalent of the set of device interface processes described by the ADARTS
Guidebook. What remain to be identified are the internal environment-independent processes. The
shaded area in Figure 17 indicates the kinds of processes (including data stores) from the general
scheme that remain to be identified. This section describes how to identify the REQ processes.

REQ relations are specified in CoRE using event, condition, or selector tables. Map a condition table
or selector table to a single process activated periodically. For event tables, map each unique event
(see Section 2.6.2) to a process.

Each of these REQ processes represents a potentially concurrent transformation from
approximations of monitored variables to an approximation of a controlled variable. Section 4.1.4.1
describes how to derive processes in the initial process architecture from REQ value functions defined
by event tables. Section 4.1.4.2 describes how to derive processes from REQ value functions defined
by condition and selector tables.

28

4. Proces Structuring

Input.Stimulus Output-4

IVariable

IOUs

4.1EInput output-
Variable VariableCnrolled

I/•t Temor QOu~
Mode

-Monit(
Variable

Figure 17. General Scheme for Initial Process Architecture

4.1.4.1 Event Tables

Processes are derived from REQ value functions described in the form of event tables based on the

need to respond to distinct, potentially concurrent events. If the same event is identified more than
once in the REQ value function (i.e., they represent the same event occurring under different circum-
stances, such as in different modes), use a single process to respond to all occurrences of the event.
For example, @T(mon < 50) and @F(mon > 50) are the same event represented differently. On the
other hand, @T(mon > 0) and @T(mon < 10) are separate, distinct events (as are periodic events
with different periods or periodic events with the same period that are not in phase).

From the set of distinct events in an event table, identify those to which the software may be required
to respond concurrently (i.e., after one event occurs, the second event occurs, and the software must
be able to respond to the second event, even if it has not yet completed its response to the first event).
Consider multiple events to which the software can only respond sequentially as a single stimulus and,
therefore, a single process. For example, if two events are defined by a Boolean variable taking on the
values "True" and "False," the responses to these events are not likely to be performed in parallel be-
cause a single instance of the Boolean variable is either "True" or "False" at any given point in time.
Also, events defined conditionally, such as "@T(C1) when C2" and "@T(C1) when C3" represent one
distinct event "@T(C1)" that can be handled by actions taken conditionally upon detection of the
event.

For each REQ value function defined by an event table, create one process for each of these distinct,
potentially concurrent events. These processes are called REQ processes. Each resulting REQ
process describes the actions performed in response to a distinct event and approximates the value
of a controlled variable from one or more approximations of monitored variables and terms and
modes. Then determine from REQ' how each process approximates the value of a controlled variable.

In the HAS Buoy case study, there are two REQ relations that exemplify the derivation of processes
from event tables. In the REQ' function for the approximation of conRed_Light, there are two
different events: event RedLightOn and eventRedLightOff (see Figure 18), defined as follows:

event_RedLightOn = @T(-monLightCommand = Red-LightOnN)

eventRedLight_Off = @T(-mon._LightCommand = RedLightOff0)

29

4. Process structwurig

There is no need to simultaneously turn the light on and off (because there is only one light); therefore,
only one process is necessary in the initial process architecture to handle both events. As illustrated
in Figure 19, the events are detected by receipt of Light Command, and the need to turn the light on
or off is determined by looking at the value of Light-Command (either "On" or "Off").

ii
Event H:-conRed~ight

* S

event Red UghtOn : I "On"

i i

evenURed-LightOff j "Off"

Figure 18. REQ' Function for conRed.ligbt

/ CmandIN)omnLight_ (REQ-) 7 ,0UT0

Figure 19. REQ Process ProcessRedightRequest

As another example, the REQ' function for the approximation of con-Report contains five events:
eventPeriodic_60_Second (occurs twice), eventAirplaneDetailed_ReportRequest, eventShip_
DetailedReportRequest, and eventHistoryReportRequest, as illustrated in the Appendix. In this
case, four processes were created (see Figure 20):

"• GeneratePeriodicReports: Responds to both of the periodic events because:

- They are the same event.

- The responses cannot be carried out in parallel because the prerequisite for each of
the events is a particular mode (i.e., "modSOS" or "mode-Normal") and the
software is only in one of the two modes at any given time.

"* Generate Htory Repo. Gen • shi e.ort and Generk Air Dp• a&_e.R.or
Each of which responds to a particular kind of VesselRequest and may execute in parallel.

4.1.4.2 Condition and Selector Tables

REQ value functions defined by condition and selector tables typically represent periodic behavior
and should map to a single process that responds to periodic events. The resulting process calculates
the approximation of a controlled variable periodically. The frequency of activation for these
processes is derived from the frequency of the periodic event associated with the table.

Table 6 illustrates an example of a condition table defining a REQ' function. Figure 21 illustrates how
the process derived from it may appear on the initial process architecture diagram, assuming a
requirement to modify the controlled variable every 10 seconds.

3X

4. Process Structuring

Generate Ship Generate_Airplane Generate-
History j~eport Detailed-Report Periodic Reports
(REQ) (REQ) (REQ) (REQ)

Vessel Tue6
Reque;t Ve esel se_

Rei"~ Reqult Report Report

Determine- Rpor
Vessel.Request
(IN - Setoutgoing-

RadioMessage_
Value (OUTt)

Figure 20. REQ Processes Supporting REQRelation for con Report

Table 6. Deriving Processes From Condition Tables

Mode Condition

mode-Normal - monTemperature < 100oC mon..bmperature > 100°C

mode-Degraded - monTemperature < 90°C mon Temperature > 90°C

con Status Light= 'Green" "Red"

event Periodic10-Se'cond•-

Proces .monTemperature 2•>

mode / Process /con tatus / Process

/ Proce~ss mode light

Figure 21. Periodic REQ Process

4.1.5 MODE MACHINES

Create a process for each mode machine in the CoRE specification. These processes are called mode
processes, and their purpose is to track the current operating mode of the software and update it in
response to events as stipulated by the mode machine.

Figure 22 illustrates the mode machine from the HAS Buoy case study. Figure 23 illustrates the
process derived from the mode machine: it responds to the receipt of either of two kinds of messages
that may cause the system to change state. It passes state change information to
Generate.PeriodicReports, the only process that is affected by state changes.

4.1.6 TERMs

Create a process for each term that is defined using an event. These processes are called term
processes. When the event occurs, the process calculates the value of the term, given the values of one
or more approximations of monitored variables or other terms. Do not create a process for a term
whose value is not calculated upon occurrence of an event.

31

4. Proccsu Structuring

mode-SOS

event Emergency ButtonPressed

eventResetSOS

rmodeNormal

Figure 22. HAS Buoy Mode Machine

/Determine- /
/ Reset-SOS- .- •Reset-SOS

(mode) v System Mode7 Rprs RQ

/Emergency- fEmergency_-
Button (INt) Button

Figure 23. HAS Buoy Mode Process

Table 7 shows an example of a term defined by an event that implies the need for a process on the initial
process architecture diagram. Table 8 shows an example of a term defined using a condition table that
does not irmply the need for a process.

Table 7. Term Defined by an Event

Event J termAverageTemperature

@T(monAverageNeeded = "True") Q [mon _Tmperature(t) + monTemperature(t-30)] / 2

Table 8. Term Defined by Conditions

Condition termTemperatureInjRaIge

O0!C < monTemperature < 1000C I "True"

(OL. > monjTemperature) OR (monTemperature > 1000C) I "False"

4.1.7 DETERMINING THE NEED FOR INTERNAL DATA STORAGE

From the CoRE perspective, the need for internal data storage is a derived requirement identified
during software design. The general rule of thumb for identifying the need for data storage from CoRE
specifications is to look for references to the past found in value functions (delay terms are ignored).
Search the REQ, IN, and OUT value functions, variables, and terms for references to past values of
one or more monitored variables or terms. You should identify the content of each data store and the
number of copies of data that it contains. The data store contains the corresponding approximations
to monitored variables or terms.

32

4. Process Structuring

For example, the following terms from the HAS Buoy case study indicate the need for internal data
storage. Specifically, a data store containing six copies of mon_AirTemperature data and a data store
containing 2,880 copies of term Wind-andTemperatureReport are needed.

term_AveragedAirTemperature =
ROUND ((SUM i: 0 <= i <= 5 : mon_Air_Temperature (t - 10 x i)) / 6]

term_WeatherHistoryReport =

* The set of termWindandTemperature Report(i), where i = t-136_800,

t-136_740, ... , t (i.e., step by 60 seconds). That is, the

term_Windand.TemperatureReport at every 60 second interval over the
last 48 hours. *

4.2 SPECIFYING PROCESS BEHAVIOR

This section describes how to create process behavior specifications for processes in an ADARTS
initial process architecture derived from a CoRE software requirements specification. Section 8.13.2
of the ADARTS Guidebook describes how to describe processes using process behavior specifica-
tions. This section only provides guidance in developing those parts of the specification that are af-
fected by the use of CoRE for requirements analysis. The guidelines in this section are optional,
facilitated by the precision of CoRE and motivated by the goal of maintaining CoRE's level of preci-
sion throughout design. You do not have to follow the guidelines in this section to produce an
ADARTS design from CoRE requirements. However, your design will benefit from precision if you
do follow these guidelines. The benefits of precision are described in Section 2.5.

In particular, the following parts of process behavior specifications ire affected by the use of CoRE:

* Process logic (see Section 4.2.1)

o Process interfaces (see Section 4.2.2)

0 Requirements traceability (see Section 4.2.3)

4.2.1 PROCESS LOGIC

This section describes a form of process logic: one that uses an abstract stimulus/response notation
describing process behavior on a thread-by-thread basis. The use of this form of process logic is not
required to build an ADARTS design from a CoRE requirements specification, but it is recommended
because it allows you to maintain CoL'bs precision in the process structure in an understandable and
unambiguous manner.

Section 4.2.1.1 introduces the stimulus-response notation. Section 4.2.1.2 describes an example of the
use of the stimulus/response notation. Section 4.2.1.3 provides some rationale for the use of this
notation.

4.2.1.1 Stimulus-Response Notation

Each process in the initial process architecture performs work when it responds to a stimulus. When
specifying process logic, create stimulus/response pairs, each of which defines the work performed by

33

4. Procea Structuring

a particular process in response to a stimulus. By applying the guidelines in Section 4.1, you identify
processes and the stimuli that cause them to respond from the artifacts of a CoRE model. Table 9
identifies the stimuli that may cause each kind of process in the initial process architecture to respond.

Table 9. Process Stimuli

Process Relevant Artifacts Stimuli
INs input variable definition, IN' value External event (device interrupt), periodic event, or

function receipt of a message from another process
INt IN' Receipt of message from an IN, process
Mode Mode machine Periodic event or receipt of message from term or INt

process
Tbrm Term definitions Periodic event or receipt of message from mode or INt

process
REQ REQ' Periodic event or receipt of message from mode, term,

or INt process
OUTt OUT' Periodic event cr receipt of message from REQ process
OUTS output variable definition, OUT' External event (device interrupt), periodic event, or

I receipt of message from OUTt process

When specifying the responses to stimuli, be sure to use any NAT relations that are relevant to the
behavior you are specifying. The process behavior you describe should assume that every NAT rela-
tion holds true - there is no need to attempt to detect and react to violations of NAT relations. For
example, in the HAS Buoy case study in the Appendix, there is a NAT relation defining the bounds
of the monitored variable monWaterTemperature as follows:

-4 <= monWater_Temperature <= 100 (degrees Celsius)

Therefore, the INt process that translates the value of inWater TemperatureSensor into the
approximation of monWaterTemperature need not be concerned with values out of the specified
range.

The response portion of stimulus/response pairs is an ordered set of actions that describes when the
process interacts with devices, data stores, or other processes. The response must indicate the re-
sources, including process inputs and stored information, required to produce outputs. In general,
avoid describing the details of computations in process logic; you will encapsulate them in classes rath-
er than make them explicit in process behavior specifications. However, you should make clear the
dependencies between process inputs and outputs and computations performed by a process. That is,
be sure to identify:

"* The process inputs required to perform each computation

"* Which computation results are required to produce each process output

Recording this information helps to identify candidates for process clustering, evaluate expected
performance, and identify deadlock and race conditions.

The stimulus-response notation is an unordered list of stimulus/response pairs in the following form:

34

4. Process Structuring

Stimulus: Si when C1
S2 when C2

Sn when Cn
Response: Al

A2

Am
Each Si denotes a stimulus, whether it is an external or timer event or the receipt of a message. Each
Cj, if present, identifies a qualifying condition under which the stimulus may be recognized. A re-
sponse is specified as an ordered set of actions, with each action denoted by Ai. The order of a set of
actions is significant in that it indicates the required order in which the actions must be performed
unless otherwise indicated. An action can be a computation, access to stored information, generation
of a message or external event, etc. If multiple stimuli appear in a single stimulus/response pair, the
action(s) will be taken upon recognition of any of the stimuli. It is not mandatory that a process provide
an externally visible response to each stimulus. For example, a stimulus may do no more than cause
a process to store some data locally.

The set of stimuli (Si) and actions (Ai) should indicate all externally visible activity of a process -

evaluating a condition associated with an event should not require anty externally visible activity (e.g.,
examination of data modified by other processes or interaction with other processes or the external
environment). If you omit a condition, it is assumed to be true (i.e., the stimulus is always recognized
and the actions always taken). If a stimulus occurs in a situation that satisfies the associated conditions
in two stimulus/response pairs, assume that only one of the action sequences (selected nondeterminis-
tically2) will be executed. Selection of a single response is necessary because two or more responses
may interfere with each other. Nondeterministic choice simplifies the notation by disregarding the or-
der of stimulus/response pairs. It has the additional advantage of not overly constraining the
impleiuentor.

4.2.1.2 Process Logic Example

This notation describes process logic in terms of stimulus/response pairs that are similar in nature to
the precondition/postcondition pairs sometimes used to describe serial computations. This notation
is illustrated by applying it to the GeneratePeriodic_Reports process of the HAS Buoy case study.
Every 60 seconds, this process generates a message representing a report that is passed to another
process for radio transmission. The generated message depends on the current operating mode of the
buoy:

"* If the buoy is operating in "SOS" mode, the message contains an SOS signal and the current
buoy location.

"* If the buoy is in "Normal" mode, the message contains weather information previously
obtained from external sensors and recorded in data stores by other processes.

In addition, this process reacts to the events that cause a mode change. Specifically:

2. "Nondeterministic" is not thesameas "random.""Random"choice ofseveral possibilities means that each possibilityhas
roughlythesamechanceofbeingchosen."Nondeterministic"choicemeansthatthedesignerdoes not care.Theprogram-
mer (or run-time system) may make the choice in whatever way it pleases. Nondeterministic choice may be random, but
it does not have to be.

35

4. Pfrom Structuring

"• If the buoy is in "SOS" mode and a radio message requesting termination of transmission of
SOS signals is received, the current mode is changed to "mode-Normal."

"* If the buoy is in "Normal" mode and the emergency button is pressed, the current mode is
changed to "SOS."

A summary of the stimulus/response specification for this process follows:

Stimulus: Time 60 (a timer event with a period of 60 seconds)
Response: If the buoy is in SOS mode, format and transmit an SOS message.

Otherwise, retrieve stored information about air temperature, water temperature,
wind direction, and wind magnitude (i.e., speed), format this information into a
Wind andTemperature-Report, and cause the report to be queued and transmitted.

Stimulus: Received a Mode-Change message
Response: If the buoy is in Normal mode and the Mode Change message indicates that the

Emergency Button was pressed, change the mode to SOS.
Otherwise, if the buoy is in SOS mode and the message indicates that the Reset-SOS
radio message was received, then change the mode to Normal.

Section App.3.4.4 contains the detailed specification for the GeneratePeriodicReports process.

4.2.1.3 Rationale

The stimulus/response notation is abstract and amenable to certain kinds of analysis (see Section 4.5).
The benefit of abstraction is that it discourages inclusion of irrelevant detail in the process logic. Cod-
ing details do not belong in process logic specifications because they distract the designer from impor-
tant design issues and constrain the programmer unnecessarily. You should make an effort to exclude
coding details from design specifications just as you try to exclude design information from
requirements specifications.

4.2.2 PROCESS INTERFACES

Identifying process interfaces for processes derived from an RTSA specification is straightforward:
you map them from data flows and control flows between transformations. When the initial process
architecture is derived from a CoRE specification, the mapping is not so straightforward. Typically,
a series of processes from the initial process architecture derived from a CoRE specification will take
the following form (as described in Section 4.1 and illustrated in Figure 6):

"* External events (device interrupts or timer events) or messages from other processes cause
an INs processes to sample the value of an input variable.

"* Input variables are communicated via messages from INs processes to one or more INt
processes.

" Approximations of monitored variables are communicated via messages from INt processes
to term, mode, and/or REQ processes. Term processes produce terms and mode processes
produce modes that are passed on to REQ processes via messages.

"* Approximations of the ideal values of controlled variables are communicated via messages
from REQ processes to OUTt processes.

36

4. Process Structuring

"• Output variables are communicated via messages from OUTt processes to OUTs processes.

"* Output variables are passed from OUT, processes to output devices. OUTs processes are
typically activated by incoming output variables in the form of messages, device interrupts, or
timer events.

Table 9 identifies the sources of relevant information in a CoRE model for each kind of process. Be
sure to identify and record the periodic and external events that cause processes to do work and record
them on the initial process architecture diagram and in process behavior specifications.

4.2.3 REQU REMENTs TR-AcEABiLI

The specification of requirements traceability will differ when a CoRE specification is used in place
of an RTSA specification. When mapping to an initial process architecture from an RTSA specifica-
tion, processes trace back to data transformations and control transformations. When mapping to an
initial process architecture from a CoRE specification, processes trace back to CoRE artifacts accord-
ing to Table 9. Note that when Table 9 identifies the relevant artifact as IN', OUT' or REQ',
requirements traceability is to the corresponding IN, OUT, or REQ relation of CORE.

4.3 PROCESS CLUSTERING

The ADARTS process structuring criteria guide the software designer in clustering processes from the
initial process architecture to reduce the number of processes. This section describes how the use of
a CORE software requirements specification affects application of the ADARTS process clustering
criteria and should be used in conjunction with Section 8.11 of the ADARTS Guidebook. There are
three kinds of ADARTS process structuring criteria:

"* Temporal cohesion (Section 4.3.1)

"* Sequential cohesion (Section 4.3.2)

"* Functional cohesion (Section 4.3.3)

When you cluster processes, you need to combine the process behavior specifications for the clustered
processes. The logic of process behavior specifications identifies the stimuli that activate processes
and the action(s) they take in response. Each subsection describes how to modify the process logic for
clustered processes according to the clustering criteria applied.

4.3.1 TEMPORAL COHESION

Temporal cohesion exists for a set of processes when the processes are activated at the same time. You
may decide to cluster processes exhibiting temporal cohesion. There are two kinds of temporal cohe-
sion to consider: asynchronous and periodic. Asynchronous temporal cohesion (see Section 4.3.1.1)
exists for a set of processes when the processes are activated by the occurrence of the same periodic
stimulus. Periodic temporal cohesion (see Section 4.3.1.2) may exist between processes activated by
timer (periodic) events.

The criteria described in this section are not unique to clustering processes derived from a CoRE
specification; the criteria can be applied to an initial process architecture derived from an RTSA

37

4. Process Sruuring

specification. However, CoRE's precise notation for specifying events and its inclusion timing
information and frequency profiles related to events allow you to detect and measure temporal
cohesion more accurately.

4.3.1.1 Asynchronous Temporal Cohesion

Asynchronous temporal cohesion exists for a set of processes when the processes are activated by the
same periodic stimulus. The stimulus may be:

"* An external event (device interrupt)

"* The receipt of a message at the same time from another process

The existence of asynchronous temporal cohesion is easily identifiable: two processes are temporally
cohesive if each process responds to the same message from a third process or the same event from
the external environment. If there is no such common input message or event, asynchronous temporal
cohesion does not exist between the processes.

To combine the process behavior specifications of two processes exhibiting asynchronous temporal
cohesion, interleave3 the actions of the response associated with the common stimulus of each pro-
cess. You should determine and specify whether or not the order in which the actions are performed
is significant when combining stimulus-response pairs.

Figures 24,25, and 26 illustrate examples of the application of asynchronous temporal cohesion from the HAS
Buoy case study. Figures 24 and 25 show the process behaviors for Monitor LocationCorrectionData and
MonitorIncoming Radio-Messages, respectively. Note that both processes are activated by the detection of
the external event Receiverjnterrupt. Figure 26 shows the process behavior for the process that resulted
after clustering.

Stimulus Response
------- I*-------------------------------------- r--------------------------------------T-r'I

Read (RegisterF)
if (RegisterEByte..l = 16#07#) then

received Receiver-Interrupt Location Correction Data.u <- - RegisterF.Byte_2
Location-Correction"Data.! <- - RegisterEByte.3
send LocationCorre'ction Data to Determine OmegaError

Figure 24. Monitor Location CorrectionData Process Behavior

Stimulus Response

Read (RegisterF)
case RegisterF.Byte I is

when 16#01# Z>
received Receiver-Interrupt Incoming.Radio Message.Byte I <- - "Red Light On"

send Incoming.adio Messagelto Determine ight-Command
when 16#02# ->

-- some logic has been omitted for brevity

Figure 25. Monitor Incomin.Radio.Messages Process Behavior

3. "Interleave" means to "combine in arbitrary order," not necessarily to "intersperse." The actions of the second process
may follow all of the actions of the first process.

38

4. Process Strucuring

Stimulus Response

Read (RegisterF)
case RegisterEByte 1 is

when 16#01# ->
light Switch <-- 2#1cxxxo•#
write Light Switch to RegisterH

received Receiver.Interrupt when 16#02# = >
-- some logic has been omitted for brevity

when 16#07# =->
OmegaError <- - (Lat Offset <-= RegisterEByte 2,

Lon Offset <-= RegisterEByte.3) -
send Omega-Error to'Omega..Queue

Figure 26. ProcessjReceiverInterrupt Process Behavior

43.1.2 Periodic Temporal Cohesion

Periodic temporal cohesion may exist between processes activated by timer (periodic) events. Unlike
asynchronous temporal cohesion, there are varying degrees of periodic temporal cohesion. The great-
est degree of periodic temporal cohesion exists between two processes when the periods of the pro-
cesses are equal and in phase (e.g., each process has a period of 10 seconds, beginning at time to). This
section describes how to measure periodic temporal cohesion. The guidelines in this section are an
optional enhancement to the guidelines in the ADARTS Guidebook. You do not have to follow the
guidelines in this section to produce an ADARTS design from CoRE requirements; however, if you
do, you will have a more complete understanding of your process structure.

The most efficient use of a single timer event to activate a set of periodic processes that are in phase
can be calculated by determining the greatest common divisor (GCD) of the periods (the period of
process P is given by t(P)) of the processes (GCD(t(P1), t(P2))), where P1 and P2 are the periodic pro-
cesses under consideration. If you cluster a pair of periodic processes, you can obtain the same func-
tional behavior by triggering the clustered process at a rate equal to the GCD of the periods of the
clustered processes. The greatest degree of temporal cohesion exists between periodic processes P1
and P2 when GCD(t(P1), t(P2)) = t(P 1) = t(P 2) (i.e., when the processes have equal periods).

However, it may be beneficial to cluster processes with different periods. In this case, GCD(t(P1),
t(P2)) = t(P1) = t(P 2) does not hold, implying that there may be situations in which the clustered pro-
cess will have nothing to do when it is triggered. When you cluster processes with different periods,
you should try to maximize the number of times the clustered process does work in response to a timer
event (as opposed to responding to the timer event by doing nothing). Let:

Pr(P1) be the probability that process P1 of the cluster will do work in response to a timer event

Pr(P2) be the probability that process P2 of the cluster will do work in response to a timer event

Pr(P1 and P2) be the probability that both P1 and P2 will do work in response to the same timer
event

Pr(P1 or P2) be the probability that either P1 or P2 will do work in response to the same timer event

39

4. Proceu Struturing

When you select periodic processes (P1 and P2) to cluster, you want to maximize the frequency with
which the clustered process will do work in response to the timer event. That is, you want to maximize:

Pr(P1 or P2) = Pr(PV) + Pr(P2) - Pr(P1 and P2)

The ADARTS Guidebook states that sequentially cohesive processes cannot be clustered using
temporal cohesion. If there is no sequential relationship between P1 and P2, then the probability that
one will do work in response to a timer event is independent of the probability that the other will do
work in response to the same timer event. Because the individual probabilities are independent,
Pr(PI and P2) = Pr(PI) Pr(P2) holds. From the discussion above,

Pr(P1) = GCD(t(P1), t(P2)) and P(P2) = GCD(t(P1), t(P2))
t(P1) t(P2)

implying that the probability of the clustered process doing work in response to a timer event with
period gcd(t(P1), t(P2)) is

Pr(Pi or P2) - GCD(t(P1), t(P2)) + GCD(t(P1), t(P2)) GCD2(t(P1), t(P2))
t(P1) t(P2) t(P1)t(P2)

For example, consider periodic processes P1 and P2 with t(P1) = 60 ms and t(P 2) = 40 ms, implying
that GCD(t(PI), t(P2)) = GCD(60, 40) = 20. Therefore, Pr(P1 and P2) = 20/60 + 20/40 - 400/2400
= 1/3 + 1/2 - 1/6 = 67%, meaning that if P1 and P2 are clustered into a periodic process triggered
every 20 ms, 67% of the periodic events would cause the process to do work.

For another example, consider processes P1 and P2 with t(P1) = 10 ms and t(P 2) = 20 ms, implying
that GCD(t(P1), t(P2)) = GCD(10, 20) = 10. Therefore, Pr(P1 and P2) = 10/10 + 10/20 - 100/200
= 1/1 + 1/2 - 1/2 = 100%, meaning that if P1 and P2 are clustered into a periodic process triggered
every 10 ms, every periodic event would cause the process to do work. This is an example of the
greatest degree of periodic temporal cohesion possible.

The discussion and examples above assume that processes P1 and P2 are in phase. It is possible for
two processes to have the same periods but different phases. For example, the timer event for process
P1 could be

@T(monTime mod 10 ms 5 ms)

and the timer event for process P2 could be

@T(monTime mod 10 ms = 0 ms and monTime ; 0 ms)

In this case, the timer events of interest to each of the two processes are as follows:

PL" 5ms, 15 ms, 25ms,...
P2: 10ims, 20ms, 30ms,...

This implies that the clustered process should have a period of 5 ms rather than 10 ms and that Pr(P1
and P2) will be 50% rather than 100%.

To combine the process behavior specifications of two processes with the same period, interleave the
actions of the response associated with the periodic event in each process. You combine the process

40

4. Process Structuring

behavior specifications in the same way you do for asynchronous t. ,xiporal cohesion, except that the
stimulus is a periodic event (e.g., @T[mon Time mod 60 seconds = 0]) rather than asynchronous.

If you cluster processes based on periodic temporal cohesion where the periods of the processes are
not equal, it may be necessary to make the responses of the processes conditional. You should deter-
mine and specify whether or not the order in which the actions are performed is significant when
combining stimulus-response pairs.

Figures 27, 28, and 29 illustrate examples of the application of periodic temporal cohesion for two
processes with different periods. Figures 27 and 28 show the process behaviors for processes activated
at 10-second and 20-second intervals, respectively. Figure 29 shows the process behavior for the
process that resulted after clustering.

Stimulus Response
.--- -----.--- -,,-- Mr .--..-.---- -- --.-.-----

I Sm t

nTime Heat Sensor <- Read (Port12)
sende2 Wsendr leat Sensor

Figure 27. Process Behavior for a 20-Second Periodic Process

Stimulus Response

when Time10 sWater Pressure Sensor <- Read (Port 1)

- ,send Water Pressure Sensor

Figure 28. Process Behavior for a 10-Second Periodic Process

Water Pressure Sensor <- Read (Port 2)send VWat er Prelsure..Sensor
when Time_10 every alternate interval

Heat-Sensor < - Read (port 2)
send Heat-Sensor

Figure 29. Process Behavior for the Clustered Periodic Process

4.3.2 SEQUENTIAL COHESION

Sequential cohesion exists between two processes when the stimulus activating one process results
from an action performed by the other process You may decide to cluster processes exhibiting
sequential cohesion. In addition to reducing the number of processes (and the inherent overhead),
clustering based on sequential cohesion reduces the number of messages communicated between pro-
cesses. An example of sequential cohesion is when one process is activated upon receipt of a message
from the other (e.g., an OUTs process responds to the receipt of the value of an output variable from
an OUTt process).

Assume that two processes, P1 and P2, exhibit sequential cohesion because the stimulus that activates
P2 is a receipt of a message from P1. To combine the process behavior specifications of P1 and P2,
interleave the actions of P2 with those of P1, beginning with the action that causes the stimulus
activating P2. If clustering makes the activating action unnecessary, remove it from the list of actions.

41

4. Proces Stnruc

Figures 30, 31, and 32 illustrate an example of the application of sequential cohesion from the HAS Buoy
case study. Figures 30 and 31 show the process behaviors for Set_Light Switch Value and
Control_LightSwitch, respectively. Note that the message LightSwitch is sent from SetLightSwitch_Value
to ControL LightSwitc - causing it to respond. Figure 32 shows a portion of the process behavior for the
process that resulted after clustering (additional clustering based on sequential cohesion is reflected in
this process logic).

Stimulus Response

-------------- H--------------------
if (RedLight = "On") then

is Light Switch <-- 2#lxxxmooo#
received Red-Light elsif (RedLight = "Off") then

Light Switch <-- 2#0xxoxxox#
!isend LSwitch to ControlLightSwitch

Figure 30. SetLightSwitchValue Process Behavior

Stimulus , a Response

r dLighSwitch write LightSwitch to RegisterH

Figure 31. Control.Light.Switch Process Behavior

Stimulus Response

Read (RegisterF)
case RegisterF.yte is

when 16#01# =;>
LightSwitch <-- 2#1lxxoxxx#
write Light Switch to RegisterH

when 16#02# = >
received ReceiverInterrupt Light-Switch <- - 2#0xxxxxxx#

write Light.Switch to RegisterH
when 16#03 = >

-- some logic has been omitted for brevity

Figure 32. ProcessReceiverInterrupt Process Behavior

4.3.3 FuNCTONAL COHlESION

When the application of the process clustering criteria based on temporal and sequential cohesion
does not reduce the initial process set to a small enough size, you may cluster processes exhibiting
functional cohesion. Use the guidelines for clustering processes based on functional cohesion as
specified in the ADARTS Guidebook.

To combine the process behavior specifications of two processes exhibiting functional cohesion,

either:

42

4. Process Structuring

"* Use multiple stimulus/response pairs to specify process logic

"* Use a single stimulus/response pair with a conditional response

Figures 33, 34, and 35 illustrate an example of the application of sequential cohesion from the HAS
Buoy case study. Figures 33 and 34 show the process behaviors for Generate_- HistoryReport and
GenerateShipDetailedReport, respectively. Figure 35 shows a portion of the process behavior for
the process that resulted after clustering.

Stimulus Response
-------- H----------------------------------rr

1: Report.Report1 pe <-- "Weather History, Report"
received (Vessel-Request = a ReportASCII Report <- - read Weather History Report from

"HistoryReportRequest") the Report History data store and convert to ASCII
f send Report to SctOutgomnLRadio.MessageValue
I'

Figure 33. Generate HistoryReport Process Behavior

ii
Stimulus II Response

-------- ----------------------------- - -------

it-- - -H --

Report.Report Type <- - "Ship_tailedReport"
Buoy Location <- - get Buoy tion

received (Vessel Request = read Water Temperature value;from Water Temperature data store
"ShipDetailed Report Request") calculate term Averaged Water Temperatufe

read Air Temirrature vJues fr6m Air Temperature data store
-- some Togic has been omitted for brevity

0 t

I send Report to SetOutgoingRadio..MessageValue

Figure 34. Generate.ShipDetailedReport Process Behavior

Stimulus Response
----------------- II----------------------------

----- it- ----------------------- ----------
gi get next Vessel Request from Request Queue

I if (VesselRequest = "History eport Request") then
I I ReporLReporLTpe <- - "Weaer HistoryReport"
I Report.ASCILReport <- - read WeatherHistoryReport from

the ReportHistory data store and convert to ASCIelse
received Vessel.Request I I Buoy Location <- - get Buoy Location

I read Water Tempratre valuesIrom Water data store* a rad Waer~e eratre vaues fom W Teremperature dt tr
I calculate term AveragedWaterTemperature

read AirTemp-erature values from AirTemperature data store
Sg - - some logic has been omitted for brevty

i I Report.Report Iype <-- "ShipDetailed.Report"
send Report to Re-prtQueue

Figure 35. Generate DetailedReports Process Behavior

4.4 PROCESS COMMUNICATION AND SYNCHRONIZATION

When you mapped from a CORE specification to an initial process architecture, only data
dependencies were recorded (e.g., INt processes depend on IN, processes to supply the values of input

43

4. Procm Stucturing

variables). After process clustering is completed, you need to identify how processes communicate
and synchronize. For example, you need to identify the processes that initiate message communica-
tions and how message communication is managed. Use this section with Sections 8.12 and 3.4.1 of
the ADARTS Guidebook.

For each data dependency between processes, choose one of the four kinds of message
communications specified by ADARTS:

"* Tightly coupled with reply

"* Tightly coupled without reply

"* First-in, first-out (FIFO) queue

"* Priority queue

Also, be sure to record the periodic and external events that cause processes to respond and the data
flows representing data communicating with devices on the process architecture diagram and in
process behavior specifications.

If a process consumes multiple kinds of messages, consider using a single message communication
mechanism, such as a FIFO queue, for communicating all of the messages.

Determine whether all message communications are really necessary. For example, if a periodic IN5
process passes an input variable to an INt process, consider only passing the message when:

* The value of the input variable changes

* The INt process or a REQ process determines that an updated variable is needed

Subsequent ADARTS activities take into account process logic to optimize the message
communication that can reduce the necessary frequency of periodic events. For example, it may be
found that an INs process that polls an input variable frequently to estimate the latest value of a moni-
tored value may actually need only to respond to an infrequent request for that monitored variable
from another part of the system.

4.5 EVALUATION CRITERIA

This section describes how you can evaluate an ADARTS process architecture built from a CoRE
software requirements specification. Section 4.5.1 describes how to evaluate process behavior specifi-
cations recorded using stimulus/response pairs. Section 4.5.2 describes how to evaluate the timing
characteristics of the design. Section 4.5.3 describes how to evaluate the correctness of the design.

As with the enhanced guidelines described in Section 4.2 for specifying process behavior, these
guidelines are optional enhancements to the ADARTS method. You do not have to follow the guide-
lines in this section; however, you should strongly consider following these guidelines to have more
confidence in your process architecture.

4.5.1 EVAUATING PRocEss BEHAVIOR SPECIFICATIONS

You can perform two common analyses using the notation described in Section 4.2.1.2: detection of
potential blocking and nondeterminism. To detect potential blocking, collect all stimulus/response
pairs for a single stimulus:

44

4. Process Siructuring

Stimulus: E when C1

Stimulus: E when CN

Ensure that the expression C1 or... or CN is always true (i.e., true for any assignment of values to
variables). The stimulus E will not be recognized when the expression not (C1 or... or CN) holds. If
E refers to an external event, it will be lost; if E refers to an input message obtained via tightly coupled
communication, the sending process will be blocked, possibly forever. This analysis is similar to the
Completeness Criterion for classes described in Sections 5.3.1 and 5.3.2.

Tl detect nondeterminism, ensure that the conjunction of any two conditions for the same stimulus
is always false (i.e., any combination of values for the variables named in the pair of conditions C, Cj
results in Q and q = false). If this is not the case, e.g., if you find two stimulus/response pairs

Stimulus: E when Ci
Response: Ai

Stimulus: E when
Response: Aj

and there is a situation where Ci and Cj holds, then the implementor (or possibly the run-time system)
must determine which action will be taken. Such nondeterminism is not always bad, but you should
evaluate it to determine if it is really desirable. This rule is similar to the determinism criterion for
classes described in Section 5.3.3.

4.5.2 EvAAmtIN TIMmI CHA ermsncs

Timing analysis can become very complex. Worst case performance is usually assumed to simplify the
analysis at the expense of fixing performance problems that may not exist. This section illustrates the
kinds of analysis that are possible when the formalisms of CoRE have been used in an ADARTS
design.

In the worst case scenario, the frequency of all events is assumed to be at the maximum and the delay
of every device and process is at its maximum. When the worst case delay of the input devices, soft-
ware, and output devices is less than the tolerable delay, the design satisfies the timing requiicments:

Input device delay + software delay + output device delay < tolerable delay

However, this analysis assumes that the delay introduced by the devices and the software is linear, i.e.,
does not depend on the values of variables. This is the simplifying assumption made in CoRE case
studies and used in the case study for this report. A more complex analysis would express the delay
of each device and process as a function of the inputs and state of the system.

In practice, each stimulus response thread is evaluated to make sure it meets the timing constraint.
Each unique event found in the REQ value functions defines the stimulus in a stimulus response
thread. For example, in Section App.2. 11.1 of the HAS Buoy case study, when event_Periodic.60_
Second occurs while INMODE(mode SOS), the software must broadcast an SOS report. Given a set
of priorities, system load, etc., the delays that should be considered include:

- Processing the timer event. There is delay when the operating system wakes up the Generate_
Periodic-Reports process (see Section App.3.4.4) or when processing an interrupt from an

45

4. Pos Stucturing

external timer. There is also delay if the process is currently handling another stimulus
(Mode-Change). Calculate the worst case.

"* Set the report type, read BuoyLocation (consider the worst case, could be blocked by another
process), format report, and send report to Report-Queue.

"* Interprocess communication between GeneratePeriodicReport and Transmit-Reports,
including the worst case length of the Report_Queue and the time to prioritize the queue.

"* Worst case time for Transmit.Reports to complete sending any page it is in the middle of
transmitting.

"* Time for TransmitReports to create a one-page Outgoing_RadioMessage and write it to the
output register.

"* The delay introduced by the transmitter device.

Because all the processes in this stimulus response thread run at the highest priority and the message
is prioritized to be the highest, the effects of system load are reduced. Of course, other stimulus re-
sponse threads should be evaluated to see if this higher priority thread causes other deadlines to be
missed.

4.5.3 CORRECTNESS

This section does not represent a formal system for proving correctness (.. ,ch is beyond the scope
of the report). The example is a walkthrough suggesting a more rigorous definition of correctness
based on the precision of process behavior specifications derived from CoRE requirements. Delay is
ignored in this example to keep it manageable. Section 4.5.2 suggests the kind of timing analysis that
would likely go along with this analysis of correctness.

First, identify a behavior to verify for correctness. For example, in the HAS Buoy case study, Section
App.2.11.1, according to the REQrelation-for conReport, the eventPeriodic-60_Second
(Section App.2.6) when INMODE(modeSOS) generates an ASCII report of type SOS-Report:

Assume:
[mon._Time MOD 60 seconds] = 0and
INMODE(modeSOS)

Prove:

conReport.ReportType = "SOS-Report" and
con.Report.ASCIIReport = ASCII(termSOSReport)

An obvious simplification is helpful: termSOSReport consists of only one element,
mon.BuoyLocation. Instead, prove:

con-Report.Reportlype = "SOS-Report" and
conReport.ASCIIReport = ASCII(mon.BuoyLocation)

Look for relevant functions and operations that can be used to verify this relation. A good starting
place is any process derived from the REQ Relation for conReport. Section App.3.4.4 describes
the GeneratePeriodicReports process.

46

4. Process Structuring

Look at INMODE(modeSOS) and attempt to derive the value of SystemMode. A quick check of
the mode machine for HASBuoy in Section App.2.7.1 shows that InMode("modeSOS") can only
occur after event_EmergencyButton_Pressed and before eventResetSOS. The input device for
mon EmergencyButton, in Section App.2.13.1, is an active device generating an interrupt and a val-
ue of 2#lxxxxxxx# for inButton Indicator. The process Monitor EmergencyButton, in Section
App.3.4.6, responds to the stimulus by sending a message to GeneratePeriodic Reports,
Emergency Button = "Pressed." A systemwide check reveals that the only other way a message to
change the mode can be generated is when event Reset-SOS occurs. But as indicated,
InMode("mode SOS") precludes this between the event.Emergency Button and the current time.

According to the logic of the Generate.PeriodicReports process and the conclusion abou! messages
received, the last response to set System-Mode was:

if (SystemMode = "mode-Normal") then
System-Mode <-- "mode-SOS"

Therefore, because there are only two possible values for System-Mode, System-Mode =
"mode SOS."

Looking at the definition for Time 60 and the assumption [monTime MOD 60 seconds] = 0,
you can conclude that the stimulus, when Tune_60, occurs shortly after the eventPeriodi:_50_Second.
According to the process logic of GeneratePeriodicReports, the response to this event should be:

Report.ReportyIpe <--"SOSReport"
SOS-Report <- -read BuoyLocation data store
Report.ASCII Report <- -ASCII(SOSReport)
send Report to ReportQueue

An evaluation reveals that the BuoyLocation has been updated sometime within the last 30 seconds.
Because the buoy does not change location quickly (Section App.2.10.2), ignore the age of the location
data and conclude that the Report_Queue now contains a report with the following values:

Report = ("SOS-Report," ASCII(BuoyLocation))

Following the trail (i.e., stimulus/response thread) shows that the process TransmitReports in
Section App.3.4.7 takes reports from the ReportQueue. Because the queue is prioritized and
SOS-Reports get highest priority, assume (as opposed to doing throughput analysis) that no other
SOS-Reports are on the queue and this is the next one processed.

With a little detailed evaluation of the process logic, the Page-Count = 1 and

write OutgoingRadio Message to RegisterG, where
ReportCode <-- 2#10000001#
PageCount <--2#00010001#
Bytes_3-512 <-- ASCII(BuoyLocation)

Finally, the transmitter described in Section App.2.11.2 sends the report:

conReport.Report_Type = "SOSReport" and
con_Report.ASCIIReport = ASCII(monBuoyLocation)

47

4. Proces Structuring

4.6 FUTURE WORK

There is still a great deal of potential in several areas to exploit the precise specification of behavior:

"* The attempts at verification, although more rigorous, are still not formal. The initial work in
Section 4.5 shows promise.

" There may be more analytical approaches to deriving ADARTS stimuli from CoRE events.
These approaches could begin with the initial mapping and proceed through the design activity
with correctness preserving transformations (sinilar to the way process clustering is applied).
Moving stimuli from one process to another with appropriate updates to process logic and
message communic, tion is possible.

"* Further work will allow development of guidelines for allocating timing requirements derived
from timing requirements associated with REQ relations to a series of IN., INt, REQ, OUTt,
and OUTs processes that make up a stimulus response thread.

48

5. CLASS STRUCTURING

In the class structuring activity, you develop the static view of the software design. To begin class
structuring, you should have a complete CoRE specification for software requirements, descriptions
of customer-mandated external systems, and a knowledge of the implementation environment. You
will use this information to perform the activities in class structuring. As you apply the guidelines in
this section, you should think carefully before mapping requirements in different CoRE classes to the
same ADARTS class because the requirements are likely to change independently of each other.

5.1 DERIVING CLASSES

Thble 1 is an overview of how you form the abstractions that form the basis for ADARTS classes. The
abstractions are described in detail in Section 11.4 of the ADARTS Guidebook. Classes are derived
from variables (e.g., monitored and controlled) and from relations (e.g., REQ and NAT). In general,
you will use variables and terms to derive data abstraction and collection classes and IN and OUT
relations to derive device interface and external system classes. The following subsections describe
how you derive ADARTS classes from these parts of the CoRE behavioral model.

5.1.1 DEVICE INTERFACE CLASSES

Create one device interface class for each unique kind of device with which the software will interface.
Devices are mentioned in the definitions of input and output variables, which appear in CORE
boundary classes. Map each input variable and output variable to a device interface class. The
mapping will not be one-to-one for cases in which a single device is associated with multiple input or
output variables. You should use the guidelines described in this section with Section 9.4.1 of the
ADARTS Guidebook.

You should create one object for each device that will be controlled by the software. There will be at
least one object for each device interface class. There will be multiple objects for the same class if there
are several devices of the same type.

Thble 10 summarizes the services encapsulated by device interface classes. In general, you will create
one operation for each activity. If a device interface class contains operations to approximate
monitored variables or output variables, it should have separate operations to read input variables
from the device or to write output variables to the device. These operations should remain separate
because of the possibility that they will be invoked by different processes.

49

5. aam Stnacring

"Ihble 10. Activities Encapsulated by Device Interface Classes

Service Encapsulated in Device Interface Class

Read input variables Always

Write output variables Always
Operate the device Always
Approximate monitored variables from input If all inputs for a monitored variable come from the
variables same device and there is no need to store a

collection
Generate output variables from approximations of All outputs for a controlled variable go to the same
controlled variables device and there is no need to store a collection

Do not include translation of input variables to monitored variable approximations or output
variables from controlled variable approximations unless the resulting class will be cohesive and
understandable. Use a computation class for the translation if you do not include it in the device
interface class.

You should consider possible changes before you use a single class to interface with a device and
approximate monitored variables. For example, in the HAS Buoy case study, water temperature is
calculated by the Water Temperature Comp Class instead of the Water Temperature Device Interface
Class because the number of water temperature sensors may change in the future. On the other hand,
the number of air temperature sensors is not expected to change, so approximation of the Air
Temperature Sensor monitored variable is performed by the Air Temperature Sensor Device
Interface class (see Figure 36).

You should also be certain that a device interface class does not encapsulate multiple concerns. For
example, if the algorithm for computing air temperature was sufficiently complex, you could
reasonably consider it a concern separate from operating the air temperature sensor device. In this
case, you would encapsulate the algorithm in a separate computation class, even if the number of
devices and the algorithm were not expected to change independently.

Examples of device interface classes appear in Figure 36.

5.1.2 EXTERNAL SYSTEM CLASSES

Create an external system class to encapsulate details of interfaces between your system and other
hardware/software systems mandated by the requirements as described in Sections 9.4.2 and 5.1.1.2
of the ADARTS Guidebook. The definitions of input and output variables, which appear in CORE
boundary classes, will indicate if they are produced or consumed by external systems. Textual
annotations will indicate if any of the expressions in REQ, IN, and OUT tables are to be computed
by external systems.

5.1.3 DATA ABSTRACTION CLASSES

Data abstraction classes encapsulate concerns related to the representation of data. Use this section
with Section 9.4.3 of the ADARTS Guidebook. You should map each monitored variable, controlled
variable, input variable, and output variable to a data abstraction class. The mapping usually is not
one-to-one; variables of the same type will be mapped to the same class unless you expect the types

50

5. Class Structuring

mon Wind_Magnitude Air

mon.tAir Temperature

mon WindDirection

Requirements(partial)

AirTemperature Wind Sensor Wind Computation
Sensor Device Device Interface

Interface

Read Air Temperature Sensor lRead WindSensor Input Calculate Wind Direction

Calculate AirTempe Calculate Wind Magnitude]

Monitored Variable Approximated Monitored Variable Approximated
by Device Interface Class by Computation Class

Figure 36. Examples of Device Interface Classes

to change independently. If a variable is of a collection type, you will map it to a collection class (to
encapsulate concerns about the collection as a whole) and to a data abstraction class (to encapsulate
concerns about one member of the collection).

You should consider mapping each term to a data abstraction class. However, it is not necessary to
create a data abstraction class for every term. Terms are included in the CoRE method for the
convenience of the requirements analyst. A term is simply a named expression. A very simple term
(such as the inverse of a monitored variable) could be mapped to an operation on an existing class
(such as the data abstraction class for the monitored variable). A term representing a complex
computation (such as a trigonometric function) could be mapped to a computation class.

Recall that environmental variables are defined in CoRE boundary and term classes. Terms can be
defined in CoRE boundary, term, and mode classes. These are the CoRE classes that contain the
requirements you use to define ADARTS data abstraction classes.

A data abstraction class is associated with a single copy of some type of information; you use data
collection classes (see Section 5.1.4) to represent collections of two or more items of information. For
example, the HAS Buoy case study requirements define term AveragedWaterTemperature as the
arithmetic average of the past six water temperature readings. The collection of readings would be
mapped to a data collection class; you would form a data abstraction class for individual water
temperature values.

Create one or more data abstraction classes for each unique value type associated with a variable or
term in the CoRE specification. If two CoRE variables are of the same type but you expect their types

51

5. cia Stuturing

to change independently, create separate data abstraction classes. If the value type is composed of a
collection of identical simpler types (e.g., a set of sensor readings), create a data abstraction class for
the simple (i.e., single-valued) types and a data collection class for the collection. If two variables have
the same type but you expect the types to change independently, create a data abstraction class for
each. If the variables are of a collection type, create two data abstraction classes if you expect the
underlying single-valued types to change independently.

Note that a single-valued type may be decomposable into several atomic values. For example, the
input variable inWindSensors has four atomic values (i.e., the sensor readings for the north, south,
east, and west wind sensors). In general, you should map such a type to a single data abstraction class
providing operations to set and retrieve individual atomic values. If you expect some of the atomic
values to change independently of others, you may choose to map the attributes to separate classes.

When developing data abstraction classes, you should remember that the types and units associated
with variables and terms in a CoRE specification are not requirements and you are free to use
different types and units in the design. For example, you could represent - mon Water Temperature
in degrees Fahrenheit even though monWaterTemperature is expressed in degrees Celsius.

Create one object for each approximation (e.g., - monWindSpeed) that the software will maintain.
For approximations that are collections, you will create an object for the entire collection and one or
more objects for single elements of the collection.

To determine the operations on a data abstraction class, examine the expressions in which the
corresponding variables appear. Expressions appear in REQ, IN, and OUT relation tables and in term
definitions. You may choose to create operations specifically for simple expressions, such as
increment and decrement. If an expression is complex or requires an algorithm that is subject to
change (such as an iterative approximation algorithm), consider mapping the expression to a separate
computation class (see Section 5.1.7). You may choose to create a computation for part of an
expression (such as a trigonometric function) and establish a dependency between the data
abstraction class and th%. zomputation class. If two or more variables are mapped to the same data
abstraction class and the expressions are significantly different, you may want to consider mapping the
variables to separate data abstraction classes.

Figure 37 contains an example of two sets of similar requirements and the corresponding data
abstraction classes. Both air temperature and water temperature are provided by the environment and
averaged over a period of time. In each case, the monitored variable containing a single temperature
reading and the term representing the average are mapped to the same data abstraction class.
However, it is possible that the range of values, precision, or other characteristics of the two
temperatures will change independently, necessitating separate classes.

In Figure 38, mon rBuoyLocation is an example of a variable whose value is composed of two atomic
values (latitude and longitude). The data abstraction class created for monBuoyLocation has
separate read and set operations for latitude and longitude.

5.1.4 DATA COLLECTION CLASSES

Certain requirements are stated in terms of collections (e.g., sets, sequer- ' of values of the same
type. For example, in the HAS Buoy case study, the terms for averaged air ter temperature and
average wind direction and magnitude (speed) are defined as arithmetic a,- -.s of multiple samples

52

5. Class Structuring

mon Air Air term Averaged Air monWater W term AveragedWater
Temperature Interface emperature emperature Interface Temperature

Requirements (partial)

Air Temperature Water Temperature
Data Abstraction Data Abstraction

Set Set

Read Read

i r

ArithmeticOperations ArithmeticOperations

Mapping to Classes

Figure 37. Example of Data Abstraction Classes

monBuoy_ Air monBuoy.
Location Location

Requirements (partial)

SBuoy Location

DataAbstraction

Set Longitudc

Set Latitude

- I
FRead Latitude:]

Mapping to Data Abstraction Class

Figure 38. Example of Data Abstraction With Multiple Atomic Values

of the values of the corresponding monitored variables. Search through the REQ, IN, and OUT
relations in CoRE boundary classes for expressions that refer to sets, sequences, or other collections.
Often, these expressions will refer to collections of monitored variables or terms taken over a period
of time. You should also look for these expressions in the definitions of terms, which can appear in
CoRE boundary and term classes. Map each such expression to a data collection class, which will
export operations on the collection as a whole. Examples of operations are iterating (i.e., examining
the collection one item at a time), sorting the collection, and searching for items with specific

53

S. Cm Structuring

properties. A collection class deals with the entire collection; you will create a data abstraction class
(see Section 5.1.3) to deal with individual items in the collection. As described in Section 9.4.4 of the
ADARTS Guidebook, ADARTS maintains a separation of concerns between data abstraction and
collection classes because they can easily change independently of each other.

7b find expressions that refer to collections, look for set operators, such as summation ("SUM" in the
HAS Buoy case study), or for direct references to sets (e.g., "(i: 0< =i< =5: mon Temperature(i)}").
For example, termAveragedAirTemperature, illustrated in Figure 37, is defined with the following
expression:

ROUND[(SUM(i:o<=i<=5:mon-Air_-Temperature(t - 10-i))) / 6]

The parameter t refers to the current time. The entire expression refers to the set of six values of the
monitored variable mon Air Temperature, sampled at intervals of 10 seconds, with the most recent
sample being the current value of mon Air Temperature. The significance of this expression for Class
Structuring is that the software must maintain a collection of historic values of monAirTemperature
to approximate term AveragedAir Temperature4. The collection class corresponding to this
expression is shown in Figure 39.

I Air Temperature
Readings Collection

Record AirTemperatureT
ompute mra turei

Figure 39. Collection Class for Air Temperatures

Map to a collection class each variable, term, or expression that implies need for a collection of similar
items. Collection classes may be required for inputs and outputs as well as monitored and controlled
variables, e.g., input data read in bursts and the input variable defined as a sequence of values.

Create an object for each collection, not for each item in each collection.

5.1.5 STATE TRANSmON CLAss

An ADARTS state transition class (see Section 9.4.5 of the ADARTS Guidebook) hides the contents
of a CoRE mode machine. Mode machines are defined in CoRE mode classes. You should map to
a state transition class each unique mode machine in the requirements specification. (TWo mode
machines are identical if their definitions are the same.) Each mode associated with the mode
machine becomes a state of each object derived from state transition class. The possible changes to

4. The expression defines the value of termAveraged_ Air..Tmperature. assuming no delay or error. The term is used to
define a controlled variable representing a report transmitted in response to an event. Because the software cannot guar-
antee that the most recent temperature sample is taken when the event occurs, the requirements must limit how old the
temperature sample is allowed to be. See the CoRE Guidebook and Section 4 of this report for more information.

54

5. Class Structuring

a state transition class include the addition of new states and changes to the transitions between states.
The ADARTS Guidebook mentions the possibility of change to the sequence of actions taken in
response to an event. However, CoRE mode machines do not associate actions with mode transitions.

In general, you should create an operation for each event that causes the mode machine to change
states. Section 4.1.3.1 of the CoRE Guidebook states that an event occurs when a condition changes
value. Events can be given names such as eventButtonPressed and are described using event
expressions in the form of

GT(C1) when C2

or

OF(C 1) when C2

where C1 and C2 represent conditions and the "when" part of the expression is optional. Look for
named events or expressions such as these in the definition of a mode machine, and map them to
operations on the corresponding state transition class. If a large number of events are associated with
a single mode machine, you may choose to map several events to a single operation. If the operations
for events do not return the current mode, the state transition class must include an operation to query
the current mode. Trace the query operation to tables that mention modes of the mode machine and
expressions that include the subexpression

INMODE (X)

where x is one of the modes of the mode machine.

Figure 40 is an example of a mode machine, its definition in terms of modes, transitions, and events,
and the corresponding ADARTS state transition class.

Create one object for each mode machine in the CoRE specification. This will almost always amount
to creating one object for each state transition class. However, if the requirements specification
included two or more identical mode machines and you mapped them to the same state transition
class, then you will create multiple objects from a single state transition class.

5.1.6 USER INTERFACE CLASS

The purpose of a user interface class is to hide the look and feel of an interface between your
application and a human user. Look and feel requirements are more abstract than and can change
separately from input and output requirements. Examine REQ tables and the definitions of terms to
find user interface look and feel requirements, and map these requirements to a user interface class.
Requirements for ADARTS user interface classes will generally come from CoRE boundary classes.
Use this section with Section 9.4.6 of the ADARTS Guidebook.

For example, the Fuel Level Monitoring System case study in the CoRE Guidebook includes
requirements for displaying three operator messages. One of the messages is a number representing
the level of fuel in a tank. The other two messages are textual warnings that flash on and off at a rate
of 1 Hz (see Section B.8 of the CoRE Guidebook). Requirements for the operator display include
position and format for the messages and the flash rate for the two warning messages. This
information can change independently from the OUT relation, which specifies how the software
causes the alarm to sound.

55

S. clans Sucturins

eventEmergency
mon Emer eMod modeSystem ButtonPressed

-4mode-orma

Mode Class Definition of Mode Machine

System Mode State
Transition Class

EmergencyButtonPressed]

Reset SOSI
Current Mode

State Transition Class

Figure 40. Example of State Transition Class

You could map the user interface requirements to a user interface class as shown in Figure 41. The
Set conLevelDisplay operation displays its numeric parameter (an approximation of
mon Fuel Level in the part of the screen allocated to conLevelDisplay. The operations
Set.conHighAlarm and SetconLowAlarm each take a Boolean parameter indicating if the
corresponding message should be visible. A process would call these operations often enough to
achieve the 1 Hz blink rate. This class would depend on device interface classes that would encapsulate
low-level details of the audible alarm and display screen.

Alphanumeric Display
User Interface Class

Set.con.Level Displayl
I

Set-con-High-Alarm

ISet-con LowAlarm

Figure 41. Example of User Interface Classes

56

5. Class Structuring

5.1.7 COMPTATON CLAss

Computation classes as described in the ADARTS Guidebook (Section 9.4.7) encapsulate
computational algorithms and execution sequences. Computation classes derived from a CORE
specification encapsulate only computational algorithms because CoRE requirements are not stated
in terms of imperative actions.

Map to a computation class requirement implying the need for a computational algorithm that is
sufficiently complex to justify a separate class or that can change independently from concerns
allocated to other classes. It is not necessary to map every computation to its own class. The Air
Temperature Sensor device interface class in Figure 36 includes a computation (i.e., the conversion
of input variable approximation to a monitored variable approximation) that is simple and not
expected to change independently of the other concerns related to the device interface. The Wind
Sensor device interface class and Wind Computation classes in the same figure exemplify a
computation that should be encapsulated in a separate class because of its complexity and the
possibility of its changing separately from the device interface concerns.

Search the REQ, IN, and OUT tables, mode transition tables, and term definitions for complex
expressions and subexpressions indicating the need for a computational algorithm. You can form
ADARTS computation classes from all kinds of CoRE classes (boundary, term, and mode). You
should also examine term definitions. Map each expression to a computation class. You may choose
to map an expression to one computation class and a subexpression to another, and you also may
choose to map related computations to the same class. You may even have the opportunity to use one
function provided by the class in the definition of another. For example, the function encapsulated by
Wind Computation Class is

Wind_Direction= ARCCOS (WindVelocity__XAxis/WindMagnitude)

where

Wind_.Magnitude= SQRT(Wind_"Velocity X_Axis**2
+ Wind_VelocityY_Axis**2)

In the case study, the definitions of WindDirection and Wind-Magnitude were mapped to Wind
Computation Class, and the ARC-COS function was mapped to a separate Trigonometric Functions
Computation Class.

Create at least one object for each computation class. If the functions provided by a computation class
are defined solely in terms of their parameters, then the class will not encapsulate any state
information and a single object will be sufficient. On the other hand, a function computed
incrementally (such as a running total) will require state information. In this case, you may need to
define additional objects.

5.2 ABSTRACT INTERFACE

This section describes how you can maintain CoRE's level of precision in ADARTS class structuring
work products. Section 5.3 explains how you can use the abstract interface to verify some important
characteristics of classes. See the ADARTS Guidebook (Section 9.5) for a complete introduction to
the abstract interface. The guidelines in this section are optional enhancements to the ADARTS

57

5. 0m= Structuring

method facilitated by the precision of CoRE requirements and motivated by the desire to maintain
CoRE's level of precision in the design. The benefits of precision are discussed in Section 2.5. You
do not have to follow the guidelines in this section, but you should strongly consider doing so.

The purpose of the abstract interface is to record information about a class that is unlikely to change
over the life of the software. The abstract interface is the part of the class specification that can be used
by other software in the system. The rest of the class specification is considered "hidden" from the
viewpoint of other software. Information hidden by a class can be changed without affecting other
classes or processes in the system.

You make use of five basic concepts to document the abstract interface precisely. These concepts are
abstract state, operations, invariants, preconditions, and postconditions.

5.2.1 AmSmrR STATE

This is an abstraction of information maintained by objects derived from a class. An example of an
abstract state is the set of air temperature readings maintained by the Air Temperature Readings
Collection object (see Section App.4.8). Objects derived from some classes (e.g., the Trigonometric
Functions Computation Class) maintain no information and will have no abstract state. Objects
derived from state transition, data abstraction, and collection classes will always have an abstract
state. The abstract state of a device interface object may describe some characteristic of the device that
is significant to the software.

Describe the abstract state textually and give it a name. You will use the name to define invariants,
preconditions, and postconditions. In some cases, the abstract state will have attributes that you will
want to distinguish by assigning each a name. For example, the abstract state of the Buoy Location
Data Abstraction object has attributes Latitude and Longitude. You should also describe the domain
of values that the abstract state can assume. If the abstract state comprises several attributes, you
should associate a domain of values with each. Whenever possible, you should take the name and
domain of values from the requirements mapped to the class. If you find that the abstract state of two
objects derived from a class have different value domains, you should consider deriving the objects
from separate classes. Table 11 contains examples of abstract states.

Thble 11. Examples of Abstract State

Class Abstract State Initial Value

SOS Report state Latitude (value of stateLatitudeDefined=FALSE
Data Abstraction - <Latitude>mon..BuoyLocation) stateLongitudeDefined=FALSE

state Latitude (value of
< fongitude >monBuoyLocation)

state Latitude-Defined (Boolean value-TRUE
if Set Latitude operation called at least once)
state Longitude-Defined (Boolean value-TRUE
if SetLongitude operation called at least once)

Air Temperature stateCollection (Value: A set of up to 6 elements. {} (i.e., the empty set)
Readings The elements are taken from the same domain as
Collection mon Air Tbmperature.) I

You should specify the initial value of the abstract state in enough detail to allow you to predict how
the operations will behave. It is not always necessary to specify the initial value of each attribute of

58

5. Class Structuring

the abstract state. For example, the SOS-Report Data Abstraction class encapsulates the format of
the 60-second SOS report, which contains the current buoy location. The abstract state of the object
derived from this class consists of four items: two numeric values for latitude and longitude, and two
Boolean flags that indicate whether the numeric values have been defined. The behavior of the
operation returning the ASCII encoding of the SOS report is defined in terms of the Boolean flags,
and returns an error if either latitude or longitude is not defined. In this case, you can predict the
behavior of each operation without specifying an initial value for latitude and longitude, as long as the
Boolean flags are initially false.

5.2.2 OPERATIONS

Operations are the services exported by objects to the rest of the software. Some operations alter and
report the abstract state of an object; others, such as trigonometric functions may just compute a value
based on their parameters. You should name each operation and describe its parameters (if any).
Informally describe the effect of each operation; you will also describe operations formally using
preconditions and postconditions.

5.2.3 INvAiAtS

Invariants are assertions about the abstract state of the class. Invariants are always true. That is, an
invariant is true initially, and no change to the state of the system wiln ever negate it. Wherever
possible, express invariants as logical expressions. You will use invariants to evaluate the class
specification. You will also use invariants, along with preconditions and postconditions to evaluate
the software architecture. Table 12 contains the invariants for the classes mentioned in Table 11.

Table 12. Examples of Invariants

Class Invariants
Buoy This class has no invariants
Location
Data Abstraction
Air Temperature Readings SIZE(stateCollection) 5 6
Collection

It is possible to write global invariants which relate the abstract state of objects derived from one class
to the abstract state of objects derived from other classes, or to requirements. This technical report
deals only with local invariants, which assert properties of a single class.

5.2.4 PRCONDmONS AN)D POSTCONDITIONS

Preconditions and postconditions are assertions about the abstract state wlich define the behavior of
operations. As with invariants, the preconditions and postconditions described in this report deal only
with the abstract state and parameters. They do not mention other classes or requirements. If a
precondition holds when an operation is invoked, the associated postcondition will hold from the time
the operation completes until the next change to the abstract state or one of the parameters. Often,
an operation will behave differently under different circumstances. In such cases, you will use one
precondition-postcondition pair to describe each type of behavior. For example, the Compute
Average Air Temperature Operation on the Air Temperature Readings Collection Class returns the

59

5. Cam Structuring

arithmetic average of the air temperature readings if there are six readings in the collection, and an
error if there are fewer than six. The error indication is considered an undesired event (see Section
9.5.3 of the ADARTS Guidebook).

As with invariants, you should write preconditions and postconditions as logical expressions. When
the operation changes the value of the abstract state or a parameter, use a naming convention to
distinguish the original value from the value upon completion of the operation. In the examples, this
report uses the prefix "Updated_- " to identify the value upon completion. Table 13 contains the
preconditions and postconditions for the Record Air Temperature Operation of the Air Temperature
Readings Collection Class, where stateCollection represents the abstract state of a collection and
Value is a parameter to the operation.

Table 13. Preconditions and Postconditions for Record Air Temperature Operation

Precondition Postcondition

SIZE(state Collection) <6 Updated state Collection
=stateCollection UNION {paramValue}

SIZE(stateCollection)=6 Updated state Collection= state-Collection
- OLDEST(stateCollection) UNION {paramValue}

When defining the behavior of state transition classes, you must specify what happens when an event
occurs in a mode not anticipated in the CoRE specification. For example, the mode machine in
Figure 40 does not specify what happens if event EmergencyButtonPressed occurs in mode-SOS
or if eventResetSOS occurs in modeNormal. It is reasonable to assume that nothing should happen
in either case. There certainly should not be a mode change. Also, detection of either event/mode pair
by the software should not be considered an error because both can happen. In general, if you can
prove that an event/mode combination not mentioned in the requirements will never occur, then the
state transition class can legitimately report an error when the corresponding operation is invoked in
the corresponding state. Otherwise, the operation should do nothing when invoked in that state.

Where feasible, you should refer to the requirements when writing preconditions, postconditions,
invariants, and defining the abstract state. This will minimize the configuration control problem that
results from changes in requirements. For example, the Calculate AirTemperature Operation on
the AirTemperatureSensor Device Interface Class references IN'_for-monAir Temperature (see
Section App.4.1.1).

You should specify error bounds for operations that can introduce error. Error is usually introduced
by computations on real numbers. Error is inherent in any software representation of real numbers
because the precision of the representation is limited by the number of bits available. On the other
hand, representations of discrete values (e.g., Boolean and enumerated values) do not necessarily
introduce error. Any operation producing a value (i.e., a return parameter or update to the abstract
state) that is not taken from a discrete set has the potential to introduce error, and you should specify
a bound on the error as part of the postconditions. An example of an operation that can introduce error
is the ComputeAveraged Air Tbmperature Operation on the AirTemperatureReadings
Collection Class, shown in Table 14. In the first postcondition, Averaged AirTemperature is the
value returned by the operation, and the maximum error allowed is 1 degree centigrade. This means
that, upon completion of the operation, the return parameter Averaged_- AirTemperature will differ
from ROUND[SUM(Collection)/6] by a maximum of 1 degree. Stated formally:

6 Z

5. Class Structuring

AveragedAir-Temperature - ROUND[SUM(Collection)/6] : r 1 degree centigrade

Note that the error bound relates a value returned by an operation to the abstract state of the class.
It does not attempt to relate the value returned or the abstract state to the environmental entity that
it represents (in this case, termAveraged Air Temperature). This is consistent with the purpose of
the error bound, which is to limit the error introduced by the operation. In software architecture
design, you will relate the return value Averaged AirTemperature to the approximation of
termAveraged_Air_Temperature. No error bound is specified for the second postcondition because
no value is returned and no abstract state is updated.

Table 14. Example of Bounding Error

Precondition Postcondition

SIZE(stateCollection)=6 AveragedAirTemperature -
ROUND[SUM(stateCollection)/6]

Maximum Error: 1 degree centigrade
j SIZE(state Collection) < 6 ERROR(Insufficient Data)

5.3 EVALUATION CRITERIA

The criteria for evaluating class structuring work products discussed in Section 9.10 of the ADARTS
Guidebook applies to classes and object'- derived from CoRE requirements. This section discusses
some additional criteria that you can apply if you specified the abstract interfaces as described in
Section 5.2 of this report. This version of the evaluation criteria does not take error bounds into
consideration.

This section explains how you can use enhancements to the abstract interface described in Se-ction 5.2
to verify some important characteristics of classes. As with the enhanced abstract interface guidelines,
these guidelines are optional enhancemekt-s to the ADARTS method. You do not have ., follow the
guidelines in this section; however, you should strongly consider doing so if you followed the
guidelines in Section 5.2.

Sections 5.3.1 through 5.3.5 provide some simple rules for ensuring completeness, self-consistency,
and correctness of a class specification. These rules deal with classes in isolation; they do not describe
how to ensure that a class is consistent with other classes, with the processes that use it, or with
requirements. You will use the software architecture design ev-' luation criteria to evaluate consistency
between classes and processes and consistency of the software - -sign with requirements. Section 5.3.6
contains some simple rules for ensuring that you have defined all the classes and operations necessary
to satisfy requirements. Section 5.3.7 discusses error analysis.

Consistency between classes is a topic that you should address during implementation. In class
structuring, you derive the dependency graph by making assumptions about how you will implement
the internals of each class. If you identify a dependency between two classes, you have assumed that
the implementation of one class will use the abstract interface of the other and that the abstract
interface will be adequate. You cannot verify the assumption because you do not know how classes will
use each other. On the other hand, you can verify consistency between processes and the classes they
use because you developed process behavior specifications during process structuring.

61

5. aass Structuring

The examples in this section are very detailed and are developed using formal logic. The purpose is
to illustrate the principles involved-not to imply that your evaluation of your classes must be this
detailed or this formal. Gries (1981) contains a good discussion of the concepts motivating this section
and provides some very good guidance for verifying implementations. The notation used in this
section is defined in Section 2.7.

5.3.1 COMPLETENESS CRITERION-STRONG FORw

Each precondition describes a scenario in which an operation can be invoked. The corresponding
postcondition describes the result of invoking the operation under the scenario. If an operation is
invoked in some situation not described by any precondition, then it is not possible to predict what the
operation will do.

Every situation in which an operation can be invoked should be described by at least one precondition.
The weakest precondition for an operation should describe all permissible values of the abstract state
and parameters to the operation. The weakest precondition is formed by logically disjoining (i.e.,
or-ing together) the individual preconditions 5. You can be certain of completeness if the weakest
precondition describes all possible values of the abstract state and parameters. Stated more formally,
where P1, P2, ... , PL are preconditions for an operation, an operation satisfies the strong completeness
criterion if the following is true for all values of the abstract state and parameters:

P 1 or P2 or ... or PL

P1 or P2 or... or PL forms the weakest precondition for the operation. If the operation is invoked when
this condition is false, then you may not be able to predict what the operation will do. This form of the
completeness criterion is somewhat more restrictive than it needs to be because it covers values of the
abstract state that may be disallowed by the invariants. Section 5.3.2 discusses a less restrictive form
that you can use in place of this one.

For example, the preconditions to the Record Air Temperature operation on the Air Temperature
Readings Collection Class described in Section App.4.8 are:

Precondition 1 for Record Air Temperature operation: SIZE(stateCollection) <6

Precondition 2 for Record Air Temperature operation: SIZE(stateCollection)=6

Thus, where P, and P2 respectively denote Preconditions 1 and 2,

Pi or P2 - SIZE(stateCollection) <6 or SIZE(stateCollection) = 6
SIZE(stateCollection) s 6

which does not hold for all values of state-Collection. The situation not covered by the weakest
precondition is not(SIZE(stateCollection) s 6) m SIZE(stateCollection)>6.

If the operation is called when this condition holds, you cannot predict the outcome. At this point, you
can take one of two actions. One possibility is to examine the invariants to determine if the Record

5. Asthe term isdefinedin Gries (1981), thisistheweakestpreconditionwith respect to the disjunctionofthe postconditions
for the operation. It describes all values of the abstract state and parameters for which at least one of the postconditions
will hold when the operation completes.

62

5. Class Structuring

Air Temperature operation can ever be called when SIZE(Collection) >6. Section 5.3.2 tells you how
to do this. The other possibility is to make the operation more robust by changing the preconditions
to allow for this condition. You could broaden the second precondition to

SIZE(Collection) > 6

or you could leave the second precondition alone and add a third:

Precondition 3 for Record Air Temperature operation: SIZE(stateCollection) >6

Postcondition 3 could describe the operation returning an error condition or deleting enough old
elements of the collection to reduce the collection size to six.

In general, when you apply this form of the Completeness Criterion and the weakest precondition is
not true, you should examine its logical negation. Either apply the other form of this criterion to
convince yourself that the operation will never be called when the weakest precondition does not hold,
or change the set of preconditions to include the logical negation of the weakest precondition.

5.3.2 COMPLETENESS CRITERION-WEAK FORM

Section 5.3.1 discussed a form of the Completeness Criterion that may sometimes require you to
specify the behavior of an operation under a scenario that you do not expect to happen. The criterion
in that section has the advantage of being easy to use, but it may require you to change existing
preconditions or to add new ones. This section discussed a form of the same criterion that allows you
to use invariants to eliminate scenarios that will never arise.

The weak form of the Completeness Criterion can be stated as follows, where P1, P2, •- ., PL are
preconditions for an operation, and I1, 12,. ., IM are invariants associated with the class:

11 and 12 and... and IM implies P1 or P2 or... or PL

All of the invariants are true all of the time. Because the invariants discussed in this report are
maintained by the class, you can establish this using the Initial State Criterion (see Section 5.3.4) and
the Consequence Criterion (see Section 5.3.5). Because the abstract state will never assume a value
that does not satisfy I, and 12 and... and In this value does not need to be covered by any of the
preconditions.

The weak form of the Completeness Criterion says that whenever the invariants are all true, at least
one of the preconditions must be true. This criterion does not prohibit the preconditions from covering
situations that are not allowed by the invariants; it simply states that the preconditions may not omit
any situation that the invariants allow.

Application of the strong form of the Completeness Criterion to the Record Air Temperature
operation on the Air Temperature Readings Collection Class necessitated either rewriting one of the
preconditions or adding a new one. The weak form of the criterion does not require any such change.
The invariant for the class is SIZE(Collection)< 6, and the preconditions to the operation are
SIZE(Collection)< 6 and SIZE(Collection) = 6. The weak form of the Completeness Criterion for this
operation is satisfied if:

SIZE(stateCollection) < 6 implies S!ZE(stateCollection) <6 or SIZE(state_Collection)=6

63

S. C3am Strwuring

This is the same as

SIZE(stateCollection) < 6 implies SIZE(stateCollection) < 6

which is obviously true.

53.3 DETERMINISM CRITERION

If you use multiple preconditions to describe different situations in which an operation can be invoked,
be sure that the preconditions really do describe different situations. If two or more preconditions
hold for some combination of values of the abstract state and parameters, then you will not be able
to predict which postcondition will hold when the operation completes. In effect, you have
ambiguously specified the behavior of the operation. There is a possibility that the implementor will
discover what you meant and resolve the ambiguity accordingly. Otherwise, there is a good chance that
he will implement the operation in a way that you did not intend. You use the Determinism Criterion
to detect and eliminate ambiguities during Class Structuring. The Determinism Criterion can be
formally stated as follows, where P1, P2,.. , PL are preconditions for an operation:

Pi and Pj M false

for any i, j in the range [1..L] and i •j.

The determinism rule holds for the Record Air Temperature operation, as shown below:

P1 and P2 =-SIZE(stateCollection)<6 and SIZE(stateCollection)=6
=- false

To see the use of the Determinism Rule, consider the implication of (mistakenly) using "•" instead
of "<" in the first precondition to the Record Air Temperature operation. When the operation is
invoked with SIZE(Collection)=6, both preconditions are satisfied and either postcondition could
hold:

Postcondition 1: Updated stateCollection=stateCollection UNION {paramValue)

Postcondition 2. Updated stateCollection=
(state Collection- OLDEST(stateCollection))
UNION {paramValue)

In this case, you cannot predict the resulting size of the collection. If Postcondition 2 always holds, the
collection will not exceed the bound on its size. However, if Postcondition 1 holds at least some of the
time, then the collection will grow, possibly without bound. The ambiguity is revealed by conjoining
(i.e., and-ing together) the two preconditions:

PI and P2 SIZE(state Collection) <6 and SIZE(state-Collection)=6
- (SIZE(state Collection) < 6 or SIZE(stateCollection) = 6)

and SIZE(state Collection)=6
- (SIZE(stateCollection) <6 and SIZE(stateCollection) =6)

or SIZE(stateCollection) =6
false or SIZE(stateCollection)=6

a SIZE(stateCollection)=6

64

5. Class Structuring

The Determinism rule is a bit stronger than it needs to be. In reality, it is acceptable for two
preconditions to overlap in some cases as long as the corresponding effects are the same. A trivial
example is obtained by splitting Precondition 1 for the Record Air Temperature operation into two
cases:

Precondition la: SIZE(stateCollection) < 3
Postcondition la: Updated stateCollection=stateCollection UNION {paramValue)

Precondition 1b: 3 5 SIZE(stateCollection)<6
Postcondition 1b: Updated-stateCollection =stateCollection UNION (paramValue}

In this example, preconditions la and lb do not satisfy the Determinism Rule because the state
SIZE(state Collection) =3 satisfies both of them. However, this is not a problem because the effect
of the operation is the same in either case. For simplicity, the Determinism Criterion as stated does
not address the situation in which overlapping preconditions for an operation produce the same effect
or the situation in which the point of overlap is disallowed by the invariants.

In some cases, nondeterministic selection of a postcondition really does not matter. For example, in
many cases, an operation can detect multiple errors. If you do not care which error is reported if two
or more error conditions exist, you can leave the choice up to the implementor. See Section App.4.5.1
for an example.

5.3.4 INrrITI STATE CMiTERION

From the user's perspective, invariants must hold at all times, including the time before any operations
are performed. Therefore, the initial value of the abstract state (if there is one) must satisfy all
invariants. The Initial State Criterion can be formally stated as follows, where S defines the initial state
and I1, 12, .. , IM are invariants that are maintained by the class:

S implies I1
S implies 12

S implies IM.

The Air Temperature Readings Collection Class satisfies the initial state criterion because:

state-Collection= {} implies SIZE(stateCollection) 5 6

5.3.5 CONSEQUENCE CRITERION

You used the Initial State Criterion described in Section 5.3.4 to show that invariants maintained by
the class are true initially. If you can also rhow that no change to the abstract state of an object derived
from the class violates these invariants, tnen you have shown that the invariants are always true.
Because only the operations can change the abstract state, this amounts to showing that no operation
will cause an invariant to become false. Or, stated positively, you must show that if an operation is
invoked when the invariants are true, the invariants will still be true when the operation completes.

To describe the Consequence Criterion, some abbreviations are introduced. Where 1,, 12,. ., IM are
invariants that are maintained by the class and Pi, Q0 represent one of the L precondition-postcondition

65

5.0= Shusfring

* Let I a Il and I 2 and... and IM.

* Let UpdatedI be I with each reference to an attribute of the abstract state stateX replaced
with Updated-stateX

Then the operation satisfies the Consequence Criterion if:

I and Pi and Qi implies Updated-l

for all i in the range [1.. L].

I asserts that all of the invariants are true and refers to the abstract state before the operation takes
place. UpdatedI refers to the abstract state upon completion of the operation. Often, a postcondition
Qj will not mention each attribute of the abstract state. To prove the above in such cases, you use the
convention that anything not mentioned in the postcondition is assumed not to have changed.

Note that the above is not the same as:

I and P1 and Q1 and... and PN and QN implies UpdatedI

You must show that each precondition-postcondition pair by itself is sufficient to maintain the
invariants because upon completion of the operation, you are guaranteed only that one of the
postconditions will hold.

The Record Air Temperature operation on the Air Temperature Readings Collection Class satisfies
the Consequence Criterion. For the first precondition-postcondition pair:

SIZE(stateCollection) < 6
and SIZE(stateCollection) < 6
and Updated stateCollection= state-Collection UNION {paramValue}
implies SIZE(UpdatedjstateCollection) • 6

In other words, adding a value to a collection with fewer than six elements results in a collection with
no more than six elements. For the second pair:

SIZE(stateCollection) < 6
and SIZE(stateCollection) = 6
and Updated stateCollection=

stateCollection - OLDEST(stateCollection) UNION {paramValue}
implies SIZE(Updated-stateCollection) • 6

Or, if the collection has exactly six elements, the software can remove an element and add a new one,
and the size of the updated collection will not exceed six.

Notice that including the invariant SIZE(state_- Collection) <6 to the left of the implies operator is
redundant because each precondition makes a stronger statement about the abstract state. This
redundancy is a characteristic of the Record Air Temperature operation; including the invariant is not
redundant in general. For example, consider changing the Air Temperature Readings Collection Class
so that there are always exactly six entries in the collection and changing the Record Air Temperature
operation so that it always removes the oldest value from the collection. Then, the invariant is

66

5. Clas Structuring

SIZE(stateCollection) = 6

The single precondition to Record Air Temperature is true (because the operation always behaves in
the same way), and the single postcondition is:

Updated stateCollection=

state-Collection -OLDEST(stateCollection) UNION {param Value}

Now the invariant is necessary because omitting it yields the following, which cannot be proven:

true
and Updated-stateCollection=

stateCollection -OLDEST(stateCollection) UNION {param Value}
implies SIZE(UpdatedCollection) =6

The expression to the left of the implies operator makes no mention of the size of the collection, so
you cannot infer anything about the size of the collection when the operation completes.

5.3.6 CoRREcEss ANALYsis

Because class structuring describes static behavior without dynamic behavior, you analyze correctness
without considering timing. This approach allows you to show that the controlled variable has the
correct value when the operations are invoked at the right time and to meet timing constraints. A
complete analysis can be performed during the software architecture design when dynamic behavior
is combined with static behavior.

Before you end the class structuring activity, you should convince yourself that you have specified a
set of classes and objects that, when invoked, behaves as specified in the requirements. The essence
of this analysis is finding a sequence of operations that, when combined with device behavior, will
produce the value of a controlled variable required by REQ. You apply this analysis for every
controlled variable in the requirements specification.

For simplicity, the discussion in this section treats all class operations as functions. When an operation
changes the value of a state and a subsequent operation uses the value, that value is treated as the
function result of the "set" operation and the input to the "get" operation. For example, the
Set-Report and GetNextPage operations of the ASCII report data abstraction class use a state
variable to describe behavior.

Correctness can be shown when, for every behavior defined by a value function in REQ, there exists
a composition of operations (combined with device behavior) equal to that value function. If this
analysis is done for class structuring, it will reduce the probability of rework necessitated by software
architecture design when process logic is updated with invocations to these operations. This
composition of functions correlates to the stimulus/response threads evaluated during process
structuring.

One way to begin the analysis is to find a composition of functions that is at least well defined and
satisfies the preconditions specified for each function. Using the abbreviations VF for value function
and OP for operation, the goal can be expressed informally as:

CON.VF (monV) =
OUT.VF (outVOP (... conV.OP(... - mon V.OP(...inV.OP (IN.VF (mon V))...)...)...))

67

5. Clas Structuring

The following example is an informal walkthrough to illustrate how correctness analysis would begin.
The example uses the case study where an SOSReport is produced every 60 seconds when in
mode-SOS (see Section App.2.11.1):

Assume:
[mon Time mod 0] = 60 and
INMODE (mode-SOS)

Show that:
There exists a composition of operations for the value of conReport.ASCIIReport,
ASCII(termSOSReport).

The termSOSReport (see Section App.2.6) consists of only one element, monBuoyLocation, so
begin with the input device that provides monBuoyLocation (see Section App.2.10.1):

INformonBuoyLocation:
inOmegaSystemInput = monBuoyLocation + monOmegaError (i-.0.4 km)

Using the notation introduced earlier:

inOmegaSystem Input =
INfor-monBuoyLocation.VF(monBuoyLocation, monOmegaError)

The input variable that the software uses is inOmegaSystemInput. You can now focus on class
specifications derived from that input variable or device. You most likely need to approximate
monBuoyLocation:

OMEGANvIGATION SYSTEM DEVICE INTERFACE CLASS:

getOmega_Input (see App.4.2.1)

BUoYLOCATION COMPUTATION CLASS:

estimateBuoyLocation (OmegaSystemInput) (see App.4.10.1)

Looking at the postcondition of get Omega_Input, the value returned depends on the value of
inOmega,_SystemInput. To continue using functional notation, use a parameter instead of referring
to the input variable to get:

monBuoyLocation =

estimateBuoy Location(getOmegajnput
(INjfor-monBuoyLocation.VF(mon BuoyLocation, monOmegaError)))

There are now many candidate operations because - monrBuoyLocation is used several ways.

Because the requirement under consideration is to generate a report, concentrate on classes derived
from the conReport variable:

SOSREPORT DATA ABSTRACTION CLASS:
ASCII-Format (Set-Latitude (Latitude), Set-Longitude (Longitude)) (see App.4.7.1 and
App.4.7.2)

In fact, the latitude and longitude must be from the - mon BuoyLocation, which you already have.
Because the ASCIIFormat operation approximates the value of conReportASCII, look for

68

5. Oass Structuring

operations that can generate an output variable from - conReportASCII. Treat the state variable
as a function result and parameter to continue using the function notation for this walkthrough:

ASCIIREPORT DATA ABSTRACTION CLASS:

GetNextPage (Set-Report (-conReportASCII)) (see App.4 5.1 and App.4.5.2)

Because you are dealing with a one-page report, you do not have to deal with iteration, and one
invocation of GetNext_Page is sufficient. Also, because there is at least one page, the precondition
statePagesRemaining is true. Now you only need to apply the value function for the output device
(see Section App.2.11.2) and compose it with the monitored variable approximation above:

conReport.ASCIIReport =
Out .forconReport (GetNext_Page (SetReport (ASCII-Format (SetLatitude
(- monBuoyLocation.Latitude), Set-Longitude (monBuoyLocation.Longitude)))))

where

mon_.BuoyLocation =

estimateBuoyLocation(get OmegaInput
(INjfor-monBuoyLocation.VF(monBuoyLocation, monOmegaError)))

Of course, this only shows a possible composition of operations. By using a strong typing system or
showing that each operation's preconditions hold, you can show that the composition is well defined.
But correctness requires that the composition equal the value function given the assumptions; i.e., that
the composition of functions above simplifies to:

conReport.ASCIIReport = ASCII(termSOSReport)

To finish the analysis, each of the value functions and operations in the composition is replaced with
the appropriate expressions that describe the value returned. Then, the expression is simplified to
determine whether it equals the expression used to describe the required behavior.

5.3.7 ERROR ANALYSIS

When error and delay functions are independent (see Section 3.3), error analysis can be performed
before merging the dynamic view of the system in software architecture design. Each of the function
compositions described in Section 5.3.6 can be evaluated for the worst case error.

Each of the operations must be allocated some allowed error in the form of a constant value or
function of the operation inputs and state. This is not necessary for discrete valued objects and their
classes.

Beginning with the input device, maximum error propagation can be calculated as each function is
applied until the value of the controlled variable is calculated. If this propagated error is less than the
tolerable error in the CoRE specification for that controlled variable, then the error tolerance has
been met.

5.4 FUTURE WORK

The following topics should be considered in future versions of the class structuring guidelines:

69

S. aan Structuring

1. The evaluation criteria discussed in Section 5.3 should consider computational error.

2. The evaluation criteria should allow specialization classes to inherit characteristics informally
proven about the generalization parent (generalization and specialization classes are
described in Section 9.6 of the ADARTS Guidebook).

3. There should be additional guidance for writing invariants, preconditions, and postconditions
that relate the abstract state of a class to the requirements traced to the class (e.g., assumptions
relating the abstract state of the Air Temperature Readings Collection Class in the HAS
Buoy case study to termAveragedAir.Temperature).

70

6. SOFTWARE ARCHITECTURE DESIGN

The software architecture design activity of the ADARTS method does not use requirements artifacts
as input. Therefore, the essence of the heuristics is relatively immune to change. However, the ap-
proach presented in this document suggests that CoRE's precision can continue to be exploited as you
apply ADARTS heuristics. This section highlights the advantages of using a precise specification of
behavior during software architecture design. The guidelines in this section are optional; you do not
have to follow them to produce an ADARTS design from CoRE requirements. However, you should
strongly consider following these guidelines if you attempted to maintain CoRE's level of precision
in process and class structuring. Use this section with Section 10 of the ADARTS Guidebook.

The entrance criteria for software architecture design remain the same. You must have the process
architecture diagram, process behavior specifications, class specifications, and dependency graph
work products. The following sections describe the software architecture design activities in terms of
the more precisely defined work products:

"* Merging the dynamic and static views of the design into the software architecture diagram and
updating the process logic (see Section 6.1)

"* Identifying the need for resource monitors (see Section 6.2)

"* Evaluating the software architecture design (see Section 6.3)

"* If delay and error were specified as mutually dependent (see Section 3.3), analyzing delay and
error constraints in software architecture design (see Section 6.4)

6.1 MERGING DYNAMIC AND STATIC VIEWS

Use this section with Section 10.4 of the ADARTS Guidebook.

The key guideline in merging the dynamic and static views of the system is to evaluate the
requirements traceability in the process behavior specifications and class specifications.

A general procedure is presented in Section 6.1.1 followed by an example in Section 6.1.2.

6.1.1 GENERAL PROCEDURE

For each process behavior specification, examine the process logic and traceability to find the
operations on objects that match each response in a stimulus/response pair. Update the process logic
to invoke the operation with appropriate parameters.

Ensure that the preconditions for the operation are met when the operation is invoked. Several stimuli
may respond to the same event under different conditions. You must match the operation with the
response in such a way that the precondition is true.

71

6. Software Architceture Design

Each time an operation is used to respond to a stimulus, add a dependency from the process to the
operation of that object (if it does not already exist). This dependency is reflected in the software
architecture diagram, which is used later to evaluate the need for resource monitors.

6.1.2 ExAMPLE OF UPDATING PROCESS LOGIC

Consider the process logic of the GeneratePeriodic..Reports process in Section App.3.4.4. Using the
requirements traceability and naming conventions, each expression is replaced with invocations of op-
erations found in class specifications. Table 15 shows an example of a portion of the process logic, how
it is updated, and the classes used from the class specifications.

Table 15. Example of Updating Process Logic

Process Logic Updated Process Logic Class Specification

if (System-Mode = "mode-SOS") then if CurrentMode = Emergency then System-Mode State
Transition Class
App.4.9

Report.Reportype Report.Report Type
<- -"SOS-Report" <--"SOSReport"

SOS-Report <- - read latitude (SOS Report.latitude) BuoyLocation Data
read BuoyLocation data store read longitude (SOSReport.longitude) Abstraction Class

App.4.6

Report, "SCIIReport< - - Set Latitude (SOS Report.latitude) SOS Report Data
ASCII(SOSReport) Set-Longitude Abstraction Class

(SOSReport.longitude) App.4.7
Report.ASCIIReport
<--ASCII Format

send Report to ReportQueue send Report to Report Queue J

The software architecture diagram is updated appropriately. A partial diagram showing the
dependencies that are added based on the updated process logic appears in Figure 42.

6.2 RESOURCE MONITORS

Use this section with Section 10.5 of the ADARTS Guidebook.

There is no significant change in dealing with multiple processes accessing the same object. The same
procedure is followed to ensure access synchronization and data protection:

"* Add a resource monitor class with the same operations as the original class. Use the same class
behavior specification modified slightly to indicate synchronous access.

"* Update the dependency graph to show that the object depends on the new resource monitor
class.

6.3 EVALUATION CRITERIA

Use this section with Section 10.7 of the ADARTS Guidebook.

72

6. Software Architecture Design

SOSReport_
DataAbstractionClass SystemMode_

Set-Latitude StateTransitionClass

Set Longitude EmergencyButtonPressed

ASCII-Format Reset SOS I I Current Mode

Buoy_Location Gen.erate
Data Abstraction Class p

[Set-aitude Get-Latitude

[et Logitudej Get Longitude

Modeý :PrioQ

S:TighansteplyC~m

Figure 42. Partial Software Architecture Diagram Illustration

With the added precision of CoRE and the formalisms introduced in this report, additional evaluation
criteria can be introduced:

"The preconditions for every operation must be true each t'me the operation is invoked by a
process. For example, in the example shown in Thble 15, invoking ASCIIFormat can result
in an error if NOT(location defined). But a quick check shows that invoking Set-Latitude and
Set Longitude ensures that location-defined is true. Therefore, invoking ASCII-Format
cannot result in an error.

" The timing constraints of each process should be reasonable when considering the operations
that must be performed. This may include assigning processing time to individual operations.
Then, each process can be evaluated to see if each response can be performed within the al-
lotted execution time. A more direct analysis might include evaluating each stimulus/response
thread using the cumulative time to execute all operations in a response instead of the
estimated execution time.

"* The additional delay introduced by resource monitors does not cause a violation of the timing
constraints.

"* An informal proof of correctness can again be accomplished using the same procedure out-
lined in Section 4.5.3.

"* A more detailed and complete error analysis can be performed in software architecture design
by evaluating each stimulus/response thread. However, if a complete analysis performed in

73

6. Software Architecture Design

class structuring did not reveal any problems, you are unlikely to find any problems in software
architecture design. More likely, you may have deferred some strict constraints on the preci-
sion of operations until a more complete analysis could be done of how the operations would
be used (see Section 6.4).

6.4 RELATING DELAY AND ERROR

As discussed in Section 3.3, delay and error can be mutually dependent. Because delay is a concern
in process structuring and error a concern in class structuring, it is usually easier to design software
that meets delay and error constrai,:ts separately. However, if the constraints are tight, you may have
to take the relationship between delay and error into account. Foc example, if you cannot meet a delay
constraint, it may be possible to allow more time for a stimulus-respons, thread to complete by
restricting the error introduced by the classes participating in the thread. This section contains an
example of dealing with the mutual dependency between delay and error.

The following example of a digital speedometer illustrates how you can oaalyze the delay and loss of
precision introduced by software components and hardware devices -'.ticipating in a stimulus-re-
sponse thread and can ensure that your design does not exceed tolerance for inaccuracy or bounds on
delay. The approach illustrated in this section makes three important simplifying assumptions:

1. This approach assumes that the delay associated with each component is constant (i.e., that
each component always takes the same amount of time to transform inputs to outputs). You
can use this approach to perform a worst case analysis of your design. If the outputs are within
range, assuming worst case performance, they will be within range in all cases. However, fail-
ure to pass a worst case analysis does not imply anything about average-case performance. It
is possible for a design to fail under a low-probability scenario and still work often enough to
meet the requirements.

2. Each component in the design transforms one or more inputs to one or more outputs. In the
general case, the error introduced by a transformation will depend on the input value. This
approach assumes that the inaccuracy introduced by each input/output device and process is
constant. As with the previous simplifying assumption, the implication is that this approach
can be used for a worst case analysis but may not necessarily indicate how the design will
perform in the average case.

3. This approach does not consider the error introduced by arithmetic operations on floating-
point numbers. See Knuth (1981) for a discussion of the accuracy of floating-point arithmetic.

6.4.1 EXAMPLES OF REQUIREMENTS

The environmental variables are defined in Table 16:

Table 16. Environmental Variables

Name Type Values Physical Interpretation

mon ActualSpeed Real 0 to 120 mph The actual speed of the automobile
conDisplayedSpeed Real 0 to 120 mph The value displayed on the driver's console.

74

1OA7 51 UOSING THE- CORE REQUIREMENTS AETHOD WI1TH ADAR'TS VERMNI
010005(U) SOFTIIARE PRODUCTIVITY CONSORTIUM HERNDON YR
HLYKINS ET AL. MAR 94 SPC-93091-CMC lIT-DARPA

,UNCLASSIFIED MDA972-92-J-1018 N

mEEEEEEEomhhEEI
EEomhhEmhhEEEEE
smhmhhEohhohhE
mhmhhEmhEEEmhE
EhEohEohEEEEEE
II."..momo

I 3 4 5 6 9 1 1 2 1 14 15m

0 ~Aseoctaton for Information and Imtago ManagementVh1100 Wayne Avenue, Suite 1100 h` Wh
Silver Spring, Maryland 20910

NQP P

Centimeter
1 2 3 4 5 6 7 8 9 10 11 1 1314 15 mm

i , , , 1 1 1 1 1 i 1,I, L 1 1 1 1 i,, , ,i l il , , ,1 ,i, , I I , I, , ,,1i,,111, , , I

1 2 3 4 5

Inches 1.0 V-i o M2
U, L3.2~

125 m41.6

MANUFACTURED TO I IIM STANDARDS

"BY APPLIED IMAGE, INC..

6. Software Architecture Design

The variable con .DisplayedSpeed is an integer; the display device is not capable of displaying
decimal values.

The requirements for the speedometer are:

Ideal REQ Relation: conDisplayed-Speed = monActualSpeed
Tolerance: The displayed speed must not differ from the actual speed by more than 1 mph.
NAT Relation: Acceleration and deceleration cannot exceed 5 mph per second:

d mon Actual Speedj < 5 mph

The above NAT relation assumes that the reading of the speedometer need not be maintained in
crash situation, i.e., when the rate of deceleration is greater than 5 mph per second.

6.4.2 EXAMPLE OF DESIGN AND INFORMAL EVALUATION

The process architecture and input/output devices for the digital speedometer appear in Figure 43.
For simplicity, only the processes are shown on the software architecture diagram; objects are omitted.
In this simple example, each component takes a single input and produces a single output. An input
sensor measures the actual speed of the automobile, producing an input data item that is converted
by a process into an internal approximation of the actual speed. Another process truncates the approx-
imation into an integer, which a third process outputs to a display device. The display device then for-
mats the integer and causes it to appear on the driver's console. Interprocess communications and
communications between processes and input/output devices in Figure 43 are annotated with the
value being communicated.

mon ActualSpeed conDisplayedSpeed

Sensor Display

p
EinSpeedReading outDisplayValue

/ INet -monActual..Speed RQ / con-Displayed..Speed / ;-rj u

Timer Interrupt
Figure 43. Process Structure for Digital Speedometer

The following describes the behavior of each component. Associated with each component is the ideal
relationship between its input and its output, an upper bound on error, and an upper bound on the
amount of time required for the component to produce an output given an input.

Sensor.
IN Relation: inSpeed_Reading = monActualSpeed
Error: within 0.1 mph
Delay: 0.01 sec

75

6. Software Archite•ture Design

IN5, INt process:
Behavior: mon Actual..Speed 4pp = in-SpeedReading
Error: No loss of accuracy
Delay: 0.02 sec

REQ Process:
Behavior: -con DisplayedSpeed = integer(-mon Actual Speed + 0.5mph)
Error: The "integer" operator introduces a loss of accuracy of up to 1 unit of

measurement.
Delay: 0.1 second

OUITs, OUTt process:
Behavior: outjDisplayed3Value = - con.DisplayedSpeed
Error: No loss of accuracy
Delay: 0.02 sec

Display Device:
OUT Relation con Displayed-Speed - outDisplayedValue
Error: No loss of accuracy
Delay: 0.01 sec

To ensure that the design meets timing and accuracy requirements, use the above relationships to
derive a relationship between con Displayed-Speed and monActualSpeed. This relationship will
depend upon how the software and input/output device, generate con Displayed.Speed from
monActualSpeed. Then compare this relationship with the one in the requirements specification.
To derive this relationship, begin with the sensor's translation of mon ActualSpeed to
in_Speed-Reading and work to the end result. First, consider only loss of accuracy introduced by the
devices or computations within processes. Then consider additional loss of accuracy due to delay.

1. The maximum loss of accuracy introduced by the input sensor is 0.1 mph. Therefore,
in Speed Reading is within 0.1 mph of monActualSpeed.

2. The first process in the thread introduces no loss of accuracy. Combining its behavior with that
of the input sensor implies that -monActualSpeed is also within 0.1 mph of
monActualSpeed.

3. Because the REQ process rounds its input to the nearest integer, it introduces an error of, at
most, 0.5 mph, implying that -conDisplayed.Speeds is within 0.6 mph of
- monActualSpeed.

4. Neither the "OUTs,OUTT" nor the display device introduce any inaccuracy. Therefore,
conDisplayedSpeed is within 0.6 mph of monrActualSpeed.

The analysis thus far shows that the process structure meets the timing and accuracy requirements.
However, you must also consider that each component takes a nonzero period of time to operate, dur-
ing which time monActualSpeed can be changing at up to 5 mph per second. This can cause an addi-
tional discrepancy between the current values of conDisplayedSpeed and monActualSpeed.

1. During the 0.01 second required by the sensor to produce its input data item,
monActualSpeed can change by, at most, 0.05 mph, implying that inSpeedReading is
really within 0.15 mph of monActualSpeed.

76

6. Software Architecture Design

2. The process "INs.INt" requires 0.02 second to read the input data item. During this time,
monActual.Speed can change by, at most, 0.1 mph, implying that - monActualSpeed is
actually within 0.25 mph of monActualSpeed.

3. During the 0.1 second required by the REQ process to round -monActualSpeed, it is
possible for monActualSpeed to change by another 0.5 mph. Adding the inaccuracy
associated with the "integer" function implies that - con Displayed-Speed is within 1.25 mph
of monActualSpeed. Thus, the design exceeds the accuracy requirement, and the analysis
is not finished.

4. During the 0.02 second required by the "OUTsOUTT" process to send the output data item
to the environment, monActualSpeed can change by an additional 0.1 mph, implying that
outDisplayedValue is within 1.35 mph of monActual_Speed.

5. Finally, the Display Device requires 0.01 second to update the driver display, during which
time mon ActualSpeed can change by another 0.05 mph. Thus, it is possible for
conDisplayedSpeed to differ from mon ActualSpeed by as much as 1.40 mph, a total of
0.40 mph beyond the maximum allowable tolerance specified in the requirements.

The first analysis, which disregarded inaccuracy introduced by delay, implied that the design met the
requirements. However, this analysis, which took delay into consideration, shows that the design fails
to meet accuracy requirements. At this point, change the design, change assumptions made about the
timing and/or accuracy of one or more components, or try to convince the customer to change the
requirements. In this example, take the second option.

The most time-consuming component in the process structure is the "REQ" process, which takes up
to five times as long as any other component to translate its input into an output. Assume that a change
in data structures and algorithms will reduce the amount of time required by this process from 0.1
second to 0.01 second. The updated description of the "REQ" process is:

REQ Process:
Behavior: - conDisplayedSpeed = integer(- mon_- Actual-Speed + 0.5 mph)
Error: The "integer" operator introduces a loss of accuracy of up to 1 unit of

measurement.
Delay: 0.01 second

The updated analysis is:

1. The variable inSpeedReading is within 0.15 mph of monActualSpeed, as before.

2. The variable - mon.Actual.Speed is actually within 0.25 mph of - monActualSpeed, as
before.

3. Because the REQ process now needs only 0.01 second, the maximum change in
- monrActual-Speed is 0.05 mph, implying that - con-DisplayedSpeed will be within 0.25

+ 0.55 = 0.8 mph of monActualSpeed.

4. As before, - monActualSpeed can change by an additional 0.1 mph during execution of the
"OUTs,OUTT" process, implying that outDisplayedValue is within 0.9 mph of
monActual Speed.

77

6. Software Architecture Design

5. The additional delay of 0.01 second imposed by the Display Device will allow
mon ActualSpeed to change by another 0.05 mph, yielding a maximum discrepancy of 0.95
mph between conDisplayed Speed and montActualSpeed. This time, the result is well
within the required bounds on error.

By revising your assumption about the timing of the REQ process, you have managed to produce a
design that meets the accuracy requirements, according to the above analysis. However, there remains
one simplifying assumption that must be discarded before you can have confidence in the process
structure. Neither of the analyses considered the frequency of the timer interrupt that triggers the
"ININ," process, assuming instead that the sensor is polled constantly. To complete the analysis, con-
sider the additional delay resulting from a finite polling frequency and the effect of this delay on
accuracy.

Assuming constant polling, the discrepancy between con Displayed Speed and mon Actual Speed
is 0.95 mph. If the delay introduced by periodic polling does not exceed 0.55 mph, the design will still
meet the requirements. To determine how much time can elapse between successive polls of the input
sensor, recall the NAT relation:

[d~l 15 5 mph
t monActualSpeed sec

or

dt = 0.2 sec x d(mon Actual Speed)mph x _ _

If you maximize dt subject to the condition that d(monActualSpeed) s 0.05 mph, the result is:

dt : 0.2p-ec x 0.05 mph
mph

or

dt < 0.01 sec

Thus, a polling rate of at least 100 times per second will satisfy the accuracy bounds on
conDisplayedSpeed.

6.5 FUTURE WORK

Most of the activity of merging static and dynamic views of the system should be mechanical. Although
the precision of process structuring and class structuring work products simplifies the merging activity,
there are still disconnects. This apparently results from using a different set of criteria when defining
responses in the stimulus response threads and operations in the class specifications.

Using this new level of precision, heuristics should be defined for defining responses and operations
that make the software architecture activity of updating process logic very mechanical (potentially
automatable).

78

APPENDIX: HAS BUOY CASE STUDY

This section contains the HAS Buoy case study, including a description of the problem, a CORE
requirements specification, and ADARTS process and class structures built from the CoRE specifica-
tion. Experience obtained from this case study was used to identify and validate guidance provided
in the main portion of this report.

The CoRE work products contained in this section were developed using teamwork/RT and tailored
according to the most recent version of CoRE. The ADARTS work products contained in this section
were developed using teamwork/Ada and the guidance contained in Kirk and Wild (1992). In most
cases, the data dictionary entries have been defined using the syntax supported by teamwork/RT's
checking facility (refer to TeamworklSA and teamwork/RT User's Guide [Cadre Technologies, Inc.
1990]). Parts of the teamwork model that are specific to teamwork, such as references to database
identifiers of teamwork objects, have been omitted.

Section App.1 contains the HAS Buoy problem statement. Section App.2 contains the CoRE
specification developed for the HAS Buoy. Section App.3 contains the ADARTS process structure
that was derived from the CoRE specification. Section App.4 contains the ADARTS class structure
that was derived from the CORE specification.

APRI HAS BUOY PROBLEM STATEMENT

This section contains the HAS Buoy problem statement. This problem statement was adapted from
Software Engineering Principles (Naval Research Laboratory 1980). This problem statement has been
modified from its use in previous case studies, such as the ADARTS Guidebook.

App.1.1 ImrRODUCTION

The Navy intends to deploy HAS buoys to provide navigation and weather data to air and ship traffic
at sea. The buoys will collect wind, temperature, and location data and will periodically broadcast sum-
maries. Passing vessels will be able to request more detailed information. In addition, HAS buoys will
be deployed in the event of accidents at sea to aid sea search operations.

Each HAS buoy will contain a small computer and a number of devices for interacting with its
environment. Section App.1.7 specifies the resources that are available to the HAS buoy, including:

"* Wind sensors for determining wind magnitude and direction (see Section App.1.7.1)

"* Temperature sensors for determining air and water temperature (see Section App.1.7.2)

"* A radio receiver and radio transmitter for communicating with passing vessels (see Section App.1.73)

79

Apndix: HAS Buoy Can Study

"• A panel containing an emergency button and a red light (see Section App.1.7.4)

"* An Omega receiver for obtaining location information from the Omega navigation system
(see Section App.I.7.5)

App.1.2 SoviwAnE REQUIREMENTS

The software for the HAS buoy must satisfy the following requirements:

"• Maintain current wind and temperature information by monitoring sensors regularly and
averaging readings.

"* Calculate location via the Omega navigation system.

"* Broadcast wind and temperature information every 60 seconds.

" Broadcast more detailed reports in response to requests from passing vessels. The detailed
reports contain buoy location information in addition to the information contained in the wind
and temperature reports.

"* Broadcast weather history information upon request. These weather history reports consist
of all wind and temperature reports produced in the last 48 hours.

" Broadcast an SOS signal in place of the ordinary wind and temperature report after a sailor
presses the emergency button. SOS signals, including buoy location information, should be
broadcast periodically (every 60 seconds) until a vessel sends a reset signal.

"* Cause the buoy's red light to begin flashing and stop flashing in response to requests from
passing vessels.

"* Accept location correction information via the radio receiver from passing vessels. The software
must use this information to modify its calculation of location based on Omega information.

App.1.3 REPORTS

The contents of the reports are as follows:

"* Wind and temperature report contains the averages of each of the following over the previous
60 seconds: air temperature, water temperature, and wind magnitude and direction.

"* SOS report identifies the location of the buoy.

"* Detailed report contains the buoy location plus the averages of each of the following over the
previous 60 seconds: air temperature, water temperature, and wind magnitude and direction.

"* Weather history report contains all wind and temperature reports broadcast over the last 48
hours.

Each report must be converted to ASCII characters and transmitted in RAINFORM format. The
ASCII form of each field of a report will be as identified in Thble 17.

80

Appendix: HAS Buoy Case Study

Table 17. Report Notation

Report Field ASCII Notation

Temperature "sddd"

Buoy location "dddodd'dd.dd"bdddodd'dd.dd""

Wind direction "ddd"

Wind magnitude "ddd"

where:

" "s" = sign (blank space if positive,"-" if negative).

", "b" = blank space.

"* "d" = single digit (leading zeros must always be used, and numerical values must be rounded
upward).

* Other characters represent literals.

App.1.4 SoTlwARE TIMING REQUIREMENTS

In order to maintain accurate information, readings must be taken from the sensing devices at the
following fixed intervals:

Temperature sensors: every 10 seconds
Wind sensors: every 30 seconds

App.1.5 PoRmTIEs

Reports will be broadcast over the radio transmitter according to the following priority ranking:

SOS 1 highest

Wind and temperature 1

Detailed (ship and airplane) 2

Weather history 3 lowest

Transmission of lower priority reports will be interrupted when higher priority reports become ready
to be transmitted. Transmission of interrupted reports must be completed upon transmission of higher
priority reports.

App.1.6 ERoR DETECTION

The software will respond to erroneous input from the set of wind sensors by ignoring such data. Sensor
input is erroneous when opposing sensors provide conflicting information (see Section App.1.7.1).

App.1.7 HAS Buoy DEVICE SPECIFICATIONS

This section describes the interfaces to the devices with which the HAS Buoy software system interacts.

81

Appendix: HAS Buoy Case Study

App.1.7.1 Wind Sensors

There are four wind sensors, each of which measures the force of the wind from its respective direction
(i.e., due north, south, east, or west). Table 18 specifies the relevant information for each sensor.

Table 18. Wind Sensor Specifications

Device Description Range/Units Size Address

North Wind magnitude in due north 0 to 255 knots 8-bit unsigned integer Port C1
direction

South Wind magnitude in due south 0 to 255 knots 8-bit unsigned integer Port C2
direction

East Wind magnitude in due east 0 to 255 knots 8-bit unsigned integer Port C3
direction

West Wind magnitude in due west 0 to 255 knots 8-bit unsigned integer Port C4
direction

Note that any force detected by a wind sensor means that the opposing sensor should register no wind
(e.g., if the north sensor detects wind in the north direction, the south sensor should detect zero wind).

The wind sensors are passive devices that may be sampled at any time. It takes, at most, 1 second for
the wind sensors to detect a change in wind magnitude and/or direction.

App.1.7.2 Temperature Sensors

There are two independent air temperature sensors and two independent water temperature sensors
that provide measurements of air and water temperature in degrees centigrade. Thble 19 specifies the
relevant information for each sensor.

Table 19. Temperature Sensor Specifications

Device Description Range/Units Size Address
Air1 Air temperature ten feet above -128 0 C to 8-bit two's-complement Port BI

the water surface 1270 C integer

Air2 Air temperature ten feet above -128°C to 8-bit two's-complement Port B2
the water surface 127°C integer

Waterl Water temperature four feet be- -1280C to 8-bit two's-complement Port Al
low the water surface 1270C integer

Water2 Water temperature four feet be- -128 0 C to 8-bit two's-complement Port A2
low the water surface 1270C integer I _ I

The temperature sensors are passive devices that may be sampled at any time. It takes, at most, 1
second for the temperature sensors to reflect a change in air or water temperature.

App.1.73 Radio

The radio receiver is capable of receiving 3-byte message packets. Message packets are made up of
the following two components:

82

i mmmmi m mmmmmmIt m mm m

Appendix: HAS Buoy Cae Study

" Message Type:

Byte 1: 16#01# = request to turn on the buoy's red light
16#02# = request to turn off the buoy's red light
16#03# = request for a weather history report
16#04# = request for a detailed report
16#05# = request to terminate transmission of SOS signals
16#06# = submittal of location correction data (see Supplemental Data)
others = none

"* Supplemental Data:

Bytes 2 and 3: if Byte 1 indicates submittal of location correction data then:
Byte 2: 8-bit two's complement integer indicating Omega system error

correction for latitude calculation in kilometers
Byte 3: 8-bit two's complement integer indicating Omega system error

correction for longitude calculation in kilometers
otherwise this byte is unused.

The radio receiver is an active device that sets Bytes 1, 2, and 3 according to message type each time
an incoming message is detected. Acknowledgment of messages received by the software is performed
by resetting Byte 1. It takes, at most, 6.0 seconds for the radio receiver to identify and capture an
incoming message. Thble 20 provides additional information about the radio receiver.

The radio transmitter is capable of transmitting 512-byte message packets. Message packets are made
up of the following three components:

"* Packet Type:

Byte 1: 2#10000001# means bytes 3 to 512 contain a page of an SOS report
2#10000010# means bytes 3 to 512 contain a page of a wind and temperature report
2#10000011# means bytes 3 to 512 contain a page of a detailed report
2#10000100# means bytes 3 to 512 contain a page of a weather history report
2#0xxxxxxx# means no message should be transmitted

"* Packet Identifier:

Byte 2: Bits 0 to 3: 4-bits range 1 to 16 representing total number of pages in report
Bits 4 to 7: 4-bits range 1 to 16 representing number of page being transmitted

"* Packet Buffer:

Bytes 3 to 512: Report page represented by 8-bit ASCII characters
End of report represented by 16#FF#

The radio transmitter is an active device that broadcasts a packet each time the most significant bit
of Byte I is set. Upon completion of a broadcast, the bit is automatically reset. It takes, at most, 10.0
seconds to transmit each packet. T.ble 20 provides additional information about the radio transmitter.

83

Afpeadu HAS Buoy Case Study

Table 20. Radio Device Specification

Device Description Range/Units Size Address

Radio Broadcasts messages over a See above 512 bytes Port G
Transmitter preset radio frequency

Radio Receives messages from a preset See above 2 bytes Port F
Receiver radio frequency

App.1.7.4 Buoy Panel

The fight on the buoy panel is a passive device that is manipulated by setting or resetting the controller
bit as specified in Table 21. It takes, at most, 0.5 second for the light to turn on or off after a request
has been made.
The emergency button is an active device that indicates the status of the button as specified in Thble 21.

It takes, at most, 0.1 second for this bit to detect a change in status of the emergency button.

Table 21. Buoy Panel Device Specification

Device Description Range/Units Size Address
Light Switch Controls the operation of the 0 (Off) Most significant bit of Port H

red light on the panel 1 (On) 8-bit byte

Emergency Indicates the status of the . 0 (Released) Most significant bit of Port E
Button emergency button on the panel 1 (Pressed) 8-bit byte

App.1.7.5 Omega Navigation System

The Omega navigation system periodically (every 30 seconds) broadcasts location information that
is obtained by the buoy's on-board Omega system receiver within 10 seconds. The receiver is a passive
d iMce, updated periodically, that indicates buoy location using the following representation:

Bytes 1 and 2: Degrees latitude range 0 to 65,535, 16-bit unsigned inte•,er
Byte 3: Minutes latitude range 0 to 255, 8-bit unsigned integer
Byte 4: Whole seconds latitude range 0 to 255, 8-bit unsigned integer
Byte 5: 1/100th seconds latitude range 0 to 255, 8-bit unsigned integer
Bytes 6 and 7: Degrees longitude range 0 to 65,535, 16-bit unsigned integer
Byte 8: Minutes longitude range 0 to 255, 8-bit unsigned integer
Byte 9: Whole seconds longitude range 0 to 255, 8-bit unsigned integer
Byte 10: 1/100th seconds longitude range 0 to 255, 8-bit unsigned integer

Table 22 provides additional device information related to the Omega system.

Table 22. Omega Device Specification

Device Description Range/Units Size Address
Omega Provides buoy location infor'ma- See above 10 bytes Port D

tion as indicated by the Omeganavigation system

84

Appendix: HAS Buoy Case Study

APP.2 CoRE REQUIREMENTS SPECIFICATION

This section contains ti - CoRE requirements specification developed for the HAS Buoy problem.
This section is deconr - ised into a number of subsections, each of which contains a particular kind of
CoRE requirem- - s artifact:

"* Section App.2.1 contains the information model.

"* Section App.2.2 contains the context diagram.

"* Section App.2.3 contains the dependency graph.

"• Section App.2.4 contains definitions of monitored and controlled variables.

"* Section App.2.5 contains definitions of input and output variables.

"* Section App.2.6 contains definitions of CoRE events and terms.

"* Sections App.2.7 through App.2.13 contain the CoRE artifacts relevant to each of the CoRE
classes identified on the dependency graph, including:

- Mode machines

- REQ relations, including relevant behavior

- IN and OUT relations, including the inverse of each value function (IN', OUT')

- NAT relations

"* Section App.2.14 contains the remaining teamwork data dictionary entries referenced from
data dictionary entries used to define CoRE artifacts.

The conventional use of teamwork was tailored in the following ways:

"* Data dictionary entries have been created to define terms used in the definitions of other data
dictionary entries. Those functions that are defined by data dictionary entries are named with
a combinatior of upper and lower case letters. Those for which a commonly understood defini-
tion of the function is assumed (e.g., COS, SIN, ROUND, SQRT) are named with all upper
case letters.

"* The CoRE convention of labeling requirements artifacts with certain prefixes (e.g., "mon ",

"in_,' "term_") has been adhered to; however, the convention has been extended to include the
following:

- "NAT-": a NAT relation.

- "behavior-of ": detailed behavior description (scheduling constraints) associated
with controlled variables and their REQ relations.

- "timing": timing and error information associated with devices specified by IN and
OUT relations. Devices are classified as one of the following (ADARTS terminology
for devices was used):

85

Appendix: HAS Buoy Case Study

-- Passive: The software may sample an input or produce an output at any time,
without synchronization.

-- Active: Interrupt mechanisms are required to synchronize inputs and outputs.

-- Periodic: Input variables are updated periodically, and output variables are
processed periodically by the device.

"* Detailed behavior descriptions (scheduling constraints) ,-sociated with controlled variables
and their REQ relations (see data dictionary entries [DDEs] prefixed by "behavior of..") have
been extended to include identification of relevant events. The frequency profile of each
event, including minimum, expected, and maximum intervals, is included in the DDEs for the
events rather than the detailed behavior descriptions.

"* Because most of the IN, REQ, and OUT relations in this case study are not dependent upon the
mode of the system (see ModeClass for modeSystemMode), the notation recommended by
the CoRE Guidebook for defining these relations was not particularly useful. Therefore, the nota-
tion was tailored for this use. With one exception (REQ Relation for con_Report), relations in
this case study will take one of the following two forms:

Condition Variable

C1 V1

C2 V2

which means that variable assumes value V1 when condition C1 is true or value V2 when
condition C2 is true, or

Event Variable

El]V 1

E2 V 2

which means that variable assumes value V1 upon occurrence of event E1 or value V2 upon
occurrence of event E2.

App.2.1 CoRE INORMATmoN MODEL

Figure 44 illustrates the CoRE information model.

The following data dictionary entries define the attributes of entities in the information model:

Air = mon_WindDirection + mon_Wind.Magnitude + mon_AirTemperature.

Buoy = monBuoyLocation.

Light = con.RedLight.

OmegaGroundUnit = monOmega_Error.

Sailor = mon_,EmnergencyButton.

Vessel = monResetSOS + monLightCommend
+ mon_VesselRequest + conReport.

Water = mon_Water_Temperature.

86

Appendix: HAS Buoy Case Study

Buoy

o0<= N

locates

Wi <= monitors 1 1 0= mnct <N Vse

F HASBuoy

--] 0<=N monitor I S on 1uo muncat Unt

mocorgncutrolsnce

Figure 45. CoRInfomtext Diagra

App2.2. DEPNTMDENCGRAM

Figure 46 illustrates the CoRE depndenxt digraph.

Buoy

mon-BoyLoatio

Appendix: HAS Buoy Cawe Study

mon-Buoy.Location mon-Vessel Request

mun-Emergency Button

monR et-SOS L cto n B o _L cto n T m

modnSysWm Moejmo Vesel Rques
classeSailorclsArcasWte

mons Wessd Dinreeport

class Waterm- mperature

Fiueo6dDpndny-rp

Phsclne pret ation mnLgtom
whilEereny ReuottpeSSont bemvrodatn edaadfndbDE

SOSData~e trm- veagd

definedby DDEWind.Watanr-TemepatretDrt

DDEWeatherHitoryatad

conRedLightas = ['0 'ff

88 -idMgitd nefc

Appendix: HAS Buoy Cast Study

PhysicalInterpretation if conRed&_Light=On the buoy light is on
if con_Red_Light=Off the buoy light is off

mon_Air_Temperature = Temperature.

PhysicalInterpretation The temperature of the air ten feet above the
surface of the water in degrees centigrade.

mon-BuoyLocation = Location.

PhysicalInterpretation Location of buoy on the earth.

monEmergencyButton = ["Pressed' "Released"].

PhysicalInterpretation
if EmergencyButton = "Pressed,' then the button is pressed,
if EmergencyButton = 'Released," then the button is not pressed.

monLightCommand = ['Red_Light-On' I 'RedLightOff'].

PhysicalInterpretation The Request from a passing ship to turn the
buoy light on (to find the buoy) or off.

mon.OmegaError =
<Lat_Offset>Error_Correction + <LonOffset>Error_Correction.

PhysicalInterpretation
The correction needed to more accurately determine location from

the Omega broadcasts, based upon the Omega ground unit monitoring
the Omega transmissions.

mon_ResetSOS = 'True' I 'False'].

PhysicalInterpretation A passing vehicle requests that the SOS signal
stop broadcasting.

monTime = 'tOI 'Startup" I t].

PhysicalInterpretation The elapsed time since system startup.

monVesselRequest = ['AirplaneDetailed-Report-Requesta I
"ShipjDetailedReportRequest' I 'HistoryReportRequest'].

PhysicalInterpretation

Represents requests for reports from passing vessels.

mon_WaterTemperature = Temperature.

Values -4 <= mon_WaterTemperature <= 100
PhysicalInterpretation The temperature of the water four feet below the

surface of the water in degrees centigrade.

monrWindDirection = Direction.

89

Appendix: HAS Buoy Case Study

PhysicalInterpretation The direction the wind is blowing measured 10
feet above the surface of the water.

monWindMagnitude = Magnitude.

Physical Interpretation
The speed of the wind in nautical miles per hour, measured
10 feet above the surface of the water.

App.2.5 INPuT AND OuTpuT VAluABLEs

This section contains the teamwork data dictionary entries defining input and output variables.

in_Air_!?emperature_Sensor = BYTE

Hardware Air temperature sensors
Values -128 <= in_AirTemperature_Sensor <= 127
DataTransfer Ports BI and B2
DataRepresentation 8-bits, two 's-complement integer

in_Buttoný_Indicator = [2*lxxxxxxocP I 02#0xxxxxxx#9]

Hardware Emergency button on buoy
Values see above
DataTransfer Port E
DataRepresentation 8-bits

inIncoming-Radio....essage=
"1Ill Red_Lightjjn *

N2* RedLight-Off*
030 History-Report..Request

1 4W* Airplane _Detailed.ReportRequest*
959 Ship.....etailed...Report__Request*

*6 Terminate_SOS...Signal *

I*71). * Location_Correction-Request +
in_Location_Correction_Data, see it's DDE*

Hardware Radio receiver
Values

Byte 1 indicates one of None, Red_.LightQn, Red-LightOff,
HistoryReportRequest, A3.rplaneý_DetailedReport-Request,
Ship-Detailed-ReportRequest, Terminate_SOSLSignal, or
Location_jCorrection...Request.
inLocatioxt.Correction-Data(Bytes 2 & 3): Contains
Location_Correction_ýData when Byte 1 indicates
Location_Correction-Request, otherwise, Bytes 2 and 3
are unused.

DataTransfer Port F
DataRepresentation
3 bytes: Byte 1: 16#01# = RedLight_...n,

16#02# = RedLightoff,
16#03# = HistorReportRequest,
16#04# = Airplane-DetailedReport...Request,

90

Appendi: HAS Buoy Cas Study

16#05# = ShipDetailed_Report_.Request,
16#06# = Terminate_SOS_Signal,
16#07# = LocationCorrection.Request,
others = None.

Byte 2: if Byte 1 = LocationCorrectionRequest then:
8-bit two's complement integer representing
latitude Omega error in kilometers
otherwise unused.

Byte 3: if Byte 1 = LocationCorrectionRequest then:
8-bit two's complement integer representing
longitude Omega error in kilometers
otherwise unused.

in_LocationCorrection_Data = <u>BYTE + <1>BYTE.

Hardware Radio receiver
Values -128 <= inLocation_CorrectionData.u <= 127

-128 <= inLocation_Correction.Data.l <= 127

DataTransfer Port F
DataRepresentation 2 Bytes: see DDE for in_IncomingRadioMessage

inOmegaSystem_Input = <Latitude>DigitalAngle + <Longitude>DigitalAngle

Hardware Omega navigation system
Values see DDE for Digital_Angle
DataTransfer Port D
DataRepresentation see DDE for Digital-Angle

IN_Relationfor_mon_Time =

mon_Time = in_Time (and inTime = -monTime)

mon_Time is the system time elapsed since startup.

in_Time =

Hardware system clock
Values see DDE for mon_Time
DataTransfer supplied by run-time system
DataRepresentation supplied by run-time system

in_Water_Temperature_Sensor = BYTE

Hardware Water temperature sensors
Values -128 <= in_WaterTemperatureSensor <= 127
DataTransfer Ports Al and A2
DataRepresentation 8-bits, two's-complement integer

inWindSensors = <North>Sensor + <South>Sensor +
<East>Sensor + <West>Sensor

Note: inWindSensors is indexed by the direction corresponding to one
of the sensors, North I South I East I West. Each sensor
measures the force of the wind coming from its respective
direction. Note that any force on a sensor means the opposing

91

Appendix HAS Buoy Casc Study

sensor should not register any value (not ((N>0 and S>O) or
(E>O and W>0))).

Hardware Four wind sensors
Values 0 <= <*>in_WindSensor <= 255
DataTransfer Ports Cl (North sensor), C2 (South sensor),

C3 (East sensor), and C4 (West sensor)
DataRepresentation Each port has 8-bits, unsigned integer

outLightSwitch = ("2#1xxxxxxx#' I N2#0xxxxxxx#1].

Hardware Buoy light
Values see above
DataTransfer Port H
DataRepresentation 8-bits

outOutgoingRadio_Message = Report-Code + PageCount + Page-ofText.

Hardware Radio transmitter
DataTransfer Port G
DataRepresentation record

Report-Code at 0 range 0..7
PageCount at 1 Byte range 0..7
Page-ofText at 2 Byte range 0..510 x 8
end record

App.2.6 EVENT AND TERM DEFNITIONS

This section contains the teamwork data dictionary entries defining events and terms. These terms and
events are referenced by other CoRE artifacts. Note that some of the events are used in the definitions
of the inverse of value functions (not REQ, IN, or OUT relations). Also, in some cases, the definitions
of events are incomplete - some do not define frequency profile.

eventAirplaneDetailedReportRequest =
OT(mon_VesselRequest = 'AirplaneDetailedReportRequestff)

FrequencyProfile
MinimumInterval 1.0 second
ExpectedInterval 30 minutes
MaximumInterval N/A

eventButton_Indicator_Reset = @T(irnButton_Indicator = 02#Oxxxxxxx#f)

event_Button_Indicator_Set = @T(in_ButtonIndicator = N2#lxxxxxxx#')

eventEmergencyButtonPressed = OT(mon.EmergencyButton = 'Pressed')

eventEmergencyButton_Released = @F(monEmergencyButton = 'Pressed')

event_History_.ReportRequest =
@T(mon_Vessel_Request = 'HistoryReport__Request')

FrequencyProfile
MinimumInterval 1.0 second

92

Appendix: HAS Buoy Cawe Study

ExpectedInterval 30 minutes
MaximumInterval N/A

event_IncomingFadio-Messagel1 = @T(inIncoming-RadioMessage = 111)

eventIncomingRadio_Message-2 = OT~inI.ncoming-Radio-Message = 12)

event_IncomingRadio-Message-.3 = @T(inlIncoming-RadioMessage = 13N)

event_Incoming...Radio-Messag'e..4 = @T(in..jncoming-Radio-Message = NW)

event_IncomingmRadio_Message...5 = @T(in...ncoming...Radio-Message = 11

eventIncoming_.Radio-yessage-6 = @T(in-Incoming-RadioMessage = 161)

eventIncoming-Radio-Message.2 = @T(in..jncomingRadioMessage = '7")

eventOmega...Update = OT (monOmega...Error (t) / = monDmegaError (t - 1))

eventOutgoingRadio-Message =

QF (out-Outgoing...Radio....essage .ReportCode = 12#Oxxxxxxx*')

eventPeriodic_30_Second = OT(EmonTime MOD 30 seconds) = 0)

eventPeriodic_60_Second = @T([monTime MOD 60 seconds] = 0)

Period
MinimumInterval 57.5 seconds
Expectedlnterva]. 60.0 seconds
MaximumInterval 62.5 seconds

eventRed-.Light-Off = ST(monLight_Command ='RedLightOff')

FrequencyProfile
MinimumInterval 10 seconds
ExpectedInterval 30 minutes
MaximumInterval N/A

eventRe&-Light.On = (@T(monLight_Command ='Red_LightOn")

FrequencyProfile
MinimumInterval 10 seconds
ExpectedInterval 30 minutes
MaximumInterval N/A

eventReport...Available = @F(-con-.Report.ReportType = 'None')

eventResetSOS = @T(mon-ResetSOS = 'Trueg)

eventShipjDetai ledýReport...Request =
@T~monVessel.Request = NShip-.Detailed-Report-RequestN)

FrequencyProfile
MinimumInterval 1.0 second
ExpectedInterval 30 minutes
MaximumInterval N/A

93

Appendixi: HAS Buoy Case Study

term-.Airplane- Detailed_ýReport
mon_Buoy...Location
"+ term-Averaged-AirTemperature
"+ term...Averagedt_Water_Temperature
"+ termAveragedWindDirection
"+ term_..AveragedWind-Magnitude.

term_..Averaged.LAi rjrempera ture =

ROUND [(SUM i: 0 <= i <= 5 :monAirTemperature (t - 10 x i)) /6]

Since there are two air temperature sensors,
term_.Averaged_Air_-Temperature is in fact the averaged air
temperatures from the two sensors.

t erm...Averaged-Wa ter...Temperature =

ROUND [(SUM i: 0 <= i <= 5 :monWater-remperature (t - 10 x i)) / 6]

Since there are two water temperature sensors,
term...Averaged_WaterTemperature must in fact average the averaged
water temperatures from the two sensors.

termAveraged.WindDirection =

Angle...Of (VECTOR,..SUM (VECTOR (mon_.WindDirection (t),
monWindDirection (t - 30))) / 2)

term_.Averaged...Wind-Magni tude =
ROUND (I monkWindjlMagnitude(t - 30) + mon_WindMagnitude~t)] /2)

tern...Ship_DpetailedReport (control flow)
monBuoy...Location
"+ termLAveragedAirTfemperature
"+ term...Averaged_Waterý_Temperature
"+ ternmAveraged_Wind_Direction
"+ ternmAveragedWind_Magnitude.

terrnSOS...Report =mon_Buoy_..Location.

termWeatherHistory..Report =
*The set of termWindand&Temperature-..Report Ci), where i = t-136_800,

t-136740, ... , t (i.e., step by 60 seconds). That is, the
termWind and...Temperature...Report at every 60 second interval over the
last 48 hours. *

term_-Wind...and...Temperature.-Report
term_Averaged.Air-Temperature
"+ termrLAveraged WaterTemperature
"+ termLAveraged_Wind_Direction
"+ term_.AveragedWind_Magnitude.

term_..WindVector =

*This term is used in the description of how monWind.Magnitude and

mon_Wind__Direction relate to in_WindSensors.*

<X>Mag'nitude + <Y>Magnitude.

94

Appendix: HAS Buoy Case Study

Using conventions, let North be the Y-axis, and East be the X-axis.
Then by the definition of mon_WindDirection, it is the angle in degrees
measured clockwise from North.

Therefore, the equivalent vector, (x,y) is defined by:
x =mon-jWindMagnitude x SIN(360 - monWind_Direction),
y = monWind_Magnitude x COS(360 - mon_Wind_Direction).

Which can be simplified to,
x = - mon,_Wind.Magnitude x SIN(mon..Wind_Direction),
y = mon..yind&Magnitude x COS(monWind_Direction).

Notes:

-monWindMagnitude in knots=
SQRT(SQUARE(inqWindSensor.South + in_WindSensor.North) +

SQUARE(in.Wind_Sensor.West + in_Wind_Sensor.East))

-monWind_-Direction in degrees (where 0=North, 90=East,
180=South, and 270=West) =

if (inWindSensor.West > 0) AND {inWind_Sensor.South > 0) then
= ROUND(INVTAN(in-jjindSensor.West / in_WindSensor.South) + 180)

elsif (in-Wind-..Sensor.West > 0) AND (inWindSensor.North > 0) then
= ROUND(INVTAN(iný_Wind_Sensor.North / in...WindSensor.West) + 270)

elsif (in...WindSensor.East > 0) AND (in_Wind_Sensor.North > 0) then
= ROUND (INVTAN (nWindSensor. east / inWind_Sensor. North))

elsif (in-..WindSenisor.East > 0) AND (inWind_Sensor.South > 0) then
= ROUND(INVTAN(in Wind_Sensor.South / in-WindSensor.East) + 90)

elsif (in...WinL-Sensor.West <= 0) AND (inWind_Sensor.East <= 0) AND
(in.Wind_Sensor.South > 0) then
= 180

elsif (in-WindSensor.West <= 0) AND (in...Wind_Sensor.East <= 0) AND
(inWind_Sensor.South <= 0) then
= 0

App.2.7 cLss.SYsTEmMMoDESPEcmFcATIoN

The class _SystemMode_Specification requirements class encapsulates the mode machine for the
HAS Buoy and the monitored variable mon-Re~set-S0S.

App.2.7.1 Mode Machines

Figure 47 illustrates the HAS Buoy mode machine in the form of a state-transition diagram.

mode...SystemMode = [modeSOS' I 'mode_.Normalm].

Initial Value 'mode_Normal'
Physical Interpretation

The current state of the system:
'mode_SOS' = currently transmitting SOS signals,
'modeNormal' = all other times.

95

Appendix HAS Buoy Case Study

lmode_SOS

eventEmergencyButtonPressed

event ResetSOS

4tmodeNonmnalI

Figure 47. Mode Machine for modeSystemMode

App.2.7.2 IN and OUT Relations

Figure 48 illustrates the IN relation for monResetSOS. Figure 49 illustrates the inverse of the IN
value function for monResetSOS.

Event inincomingRadio Message
a, -- - - - -- - - - I,,. _

event-Reset_ SOS "6"

Figure 48. IN Relation for mon ResetSOS

Event mon Reset SOS

eventIncomingRadioMessage_6 1] "flue"

Figure 49. IN' for mon Reset SOS

timingRadio_Receiver =

Device 'Active'
Events: eventAirplaneDetailed_ReportRequest,

eventShipDetailedReportRequest,
eventHistory_.ReportRequest,
event_RedLightOn,
eventRedLightOff,
eventResetSOS,
eventOmega-Update

Tolerance N/A
Delay 6.0 seconds

App.2.8 cLAssAmIRNFAcE
The cdassAirtere requirements class encapsulates the monitored variables mon_Air Tbmperature,

mort WindMagnitude, and mon Wind_Direction.

App.2.8.1 IN and OUT Relations

Figure 50 illustrates the IN relation for monAir_'Tmperature. Figuzre 51 illustrates the inverse of the
IN value function for monAirTemperature.

96 '

Appendix: HAS Buoy Case Study

Condition inAirTemperatureSensor

True : : TRUNCATE (256 x (mon Air Temperature + 100) /200) - 128
* S

Figure 50. IN Relation for monAirTemperature

I IIS _[
Condition monAir Temperature

------------------------- -----
---- I--I nje :(200 x (in Air Temperature-Sensor + 128) / 256) - 100

Figure 51. IN' for monAirTemperature

timing-AirTemperatureSensor =

Device OPassiveff
Tolerance
Delay 1 second

Figure 52 illustrates the IN relation for monWind. Figure 53 illustrates the inverse of the IN value
function for monWind.

timing.Wind_Sensors =

Device WPassivel
Tolerance
Delay 1 second

App.2.8.2 NAT Relations

(d monAirTemperature / dt) < MAX_RATE_AIRTEMPERATURECHANGE

(d mon_WindDirection / dt) < MAXRATE_WINDDIRECTIONCHANGE

(d monWindMagnitude / dt) < MAX_RATEWINDMAGNITUDE_CHANGE

App.2.9 CLASSWATERINTERFACE

classWaterInterface encapsulates the monitored variable monWater Temperature.

97

Appendix: HAS Buoy Case Study

II

0 A
I I, I

>1 0

.2 ... I=i

i *,II II0 V •

:: v

v----- -- m--A-

I .. .: , ,... 1 +

94

.'". > .-.
M, I~t I

III

0 V4

- -,'D VAA

1: A

It II

gv v

ISl II
I AI

ml AI~ I
II A mX .0

-0 A

A~ 2s A
0 Al I:~

98,.2.

Appendic HAS Buoy Case Study

App.2.9.1 IN and OUT Relations

Figure 54 illustrates the IN relation for monWater Temperature. Figure 55 illustrates the inverse of
the IN value function for mon WaterTemperature.

Condition in Water Temperature Sensor

Conditio 54 IN Reato fo _o-ae-eprt

I 'S
TI,

-- -- -- -iA---------------------------V......................................
--------------. 4---

!II

True , TRUNCATE(255 x (mon Water Temperature + 4)1/ 104)

Figure 54. IN Relation for mon.Waterjemperature

Figure 55. IN' for mon.WaterTemperature

t imingWaterTemperatur e_Sensor =

Device "Passive'
Tolerance

Delay 1 second

App.2.19. NAT Relations

-4 <= mon_Water_Temperature <= 100 (degrees Celsius)

(d mon_WaterTemperature / dt) < MAX_RATE_WATER_TEMPERATURECHANGE

App.2.10 CLASS_.BUOYLOCATION

The classBuoyLocation requirements class encapsulates the monitored variables
mont_BuoyLocation and mon_OmegaError.

App.2.10.1 IN and OUT Relations

Figure 56 illustrates the IN relation for monBuoyLocation. Figure 57 illustrates the inverse of the
IN value function for monBuoyLocation.

99

Appendix HAS Buoy Case Study

Event inOmegaSystemInput

................. 44..............itI

eventPeriodic_30_Second II (monBuoyLocation + monOmega_Efror) -

inOmegaSystem Input I < 0.4 km

Figure 56. IN Relation for monBuoyLocation

I|

IIEvent -mon Buoy.Location

----- ------
' Latitude <=

(Degrees <=MAX(Latitude>inOmegaSystemInput.Bytesj1&2,359),
m Minutes <= MAX(<Latitude>in OmegaSystemInput.Byte _3, 59),

Seconds <= MAX(<Latitude>inOmegaSystemInput.Byte._4, 59) +

eventPeriodic30_Second MAX(<Latitude> inOmega.SystemInput.Byte_5, 99) / 100),
'i

SLongitude < =

* I Degrees <= MAX<Longitude>in Omega SystemInput.Bytej.1&2,359
Minutes <= MAX(<Longitude>in_OmegaSystemInput.Byte_3, 59),

Seconds <= MAX(<Longitude>in..Omega.System Input.Byte_4, 59) +
II MIAX(<Longitude>in Omega System Input.Byte..5 9)/100)

Figure 57. IN' for mon.BuoyLocation

t imingOmegaSystem =
Device "Periodic, @ 30 seconds
Tolerance
Delay 10 seconds

Figure 58 illustrates the IN relation for mon OmegaError. Figure 59 illustrates the inverse of the

IN value function for monOmega Error.

App.2.10.2 NAT Relations

(d monBuoyLocation / dt) < MAX_CHANGE_LOCATION

App.2.11 cLAs_.VEssELlNT•RFACE

The classVesselInterface requirements class encapsulates monitored variable monVesselRequest
and controlled variable conReport.

100

Appendix: HAS Buoy Case Study

ofU,-, -. ::

'30

| |

v a o6

SI $~

SI I V.

II

10

::I .1:

o,,i •
"s'.: II
.II # =

mlo

-. : I I

.tU

I, •

|1I

101

Appendix: HAS Buoy Case Study

Event monOmegaError
-- - -- ------------------------- - - -- - --- - - - -- - - -- - - -Is

event IncomingRadio Message_7 t Lat Offset <= in Location Correction Data.u,
Lon Offset < - MLocationCorfection.Data.i

Figure 59. IN' for monOmegaError

App.2.11.1 REQ Relations
Figure 60 illustrates the REQ relation for con Report. The NATRelationfor-conReportTiming

makes the events in this table effectively synchronous.

behavior_of_con_Report =

-- Scheduling Constraints --

ControlledVariable con_Report
InitialValue RNone,
ModeClass ModeClassfor_modeSystemMode
SustainingConditions N/A
ValueFunction see REQRelation-for_conReport
Tolerance see individual monitored variables that are

used to build the different kinds of reports
NATConstraints N/A
InitiationDelay 7.5 seconds

-- Periodic Scheduling Constraints --

Events event_Periodic_60_Second
InitiationTermination initiated upon expiration of InitiationDelay,

never terminates
CompletionDeadline for eventPeriodic_60_Second, 5.0 seconds

-- Demand Scheduling Constraints --

Events eventShip-Detailed.ReportRequest,
event_AirplaneDetailedcReportRequest,
eventHistoryReportRequest

CompletionDeadline for eventShipDetailedReportRequest, 5.0 minutes
for eventAirplaneDetailed.ReportRequest, 2.0 min.
for event.HistoryReportRequest, 6.0 minutes

102

Appcndix HAS Buoy Ca Study

StI

II! *

w a,

103

S.. . . i i i i i i i i

Apendix: HAS Buoy Case Study

App.2.11.2 IN and OUT Relations

Figure 61 illustrates the IN relation for monVesselRequest. Figure 62 illustrates the inverse of the
IN value function for monVesselRequest.

Event 1i in IncomingRadioMessage

eventHistoryReportRequest. "3

event Airplane Detailed Report Request 1 "4"

eventShipDetailedReportRequest 1 1 "5"a'

Figure 61. IN Relation for mon Vessel-Request

Event mon Vessel Request
-------------------------------- F----------------------

eventIncoming.Radio Message. "HistoryReportRequest"

eventIncoming.Radio.Message,_4 I I "Airplane DetailedReportRequest"

event.IncomingRadio Message.5 I "ShipDetailedReportRequest"

Figure 62. IN' for mon3VesselRequest

Section App.2.7.2 contains the specification of timing information related to the radio receiver.

Figure 63 illustrates the OUT relation for con_Report. Figure 64 illustrates the inverse of the OUT value
function for conReport. Each -conReport maps to conReport.ASCIIReport.Number of Pages
out_Outgoing.Radio_Messages. Iterator identifies the number within that range.

timingRadio_Transmitter =
Device "Active'

Events: eventOutgoingRadioMessage
Tolerance
Delay 10 seconds

104

Appendix: HAS Buoy Case Study

iii

F I P Fa
*,, . *gh,'i -c - -. -

I, 8- o ooc

a.,, H 0 -0

-~ -1- - a a

a, I , ,I, ,5 5, .. , •

I I I it

~::: ':: : :::;: , ii ol Ii N Ml I

is s 1 4)1

as.-,0°---- 4 °
-' a •' 01 q I _0 it

0] -2I I

,, 4 4 " 4 ,* ,1 . 4k. 4*.- 4 ,k ,4

cm I

-m ------------------

S.4) 4)i l)il I

ti~ tO:t 1 o

0 '05

Appendix: HAS Buoy Case Study

App.2.11.3 NAT Relations

Figure 65 illustrates a NAT relation for conReport. This NAT relation ensures that the events in
REQRelation for con Report do not occur at the same time.

Event mon VesselRequest
-------------------- *-------I--------------------- ---

event Periodic 60 Second "None"

Figure 65. NAT Relation for con Report Timing

App.2.12 cLAssLIGHrJNTERFACE

The classLightlnterface requirements class encapsulates controlled variable conRedLight.

App.2.12.1 REQ Relations

Figure 66 illustrates the REQ relation for conRedLight.

Event con.Red Light

event RedLightOn "On"

eventRed Ught Off i "Off

Figure 66. REQ Relation for con.RedLight

behavior_ofcon_RedLight =

-- Demand Scheduling Constraints --

ControlledVariable conRedLight
InitialValue "Off"
ModeClass N/A
SustainingConditions N/A
ValueFunction see REQRelation-for_con_RedLight
Tolerance N/A
NATConstraints N/A
InitiationDelay 7.5 seconds
CompletionDeadline 1.25 seconds
Events event_Red_Light_On,

eventRedLight_Of f

App.2.12.2 IN and OUT Relations

Figure 67 illustrates the IN relation for mon Light Command. Figure 68 illustrates the inverse of the
IN value function for mon Light Command.

Section App.2.7.2 contains the specification of timing information related to the radio receiver.

106

Appendix: HAS Buoy Case Study

Event in IncomingRadio Message

eventRedjightOn 1 "1"
a a

eventRed Light Off)I "2"

Figure 67. IN Relation for monLight.Command

Event monLight Command
-------------------------------- +1--------------------
------------------------------- 4-+1--------------------

eventjncomingRadioMessage1 I "RedLight.On"
I I

eventIncominL.Radio Message. 2 H "Red _Light Off"

Figure 68. IN' for mon.UghtCommand

Figure 69 illustrates the OUT relation for conRedLight. Figure 70 illustrates the inverse of the OUT
value function for con RedLight.

out ightSwitch conRed Light

"2[#14wc#" "On"

"2#0xxxxaoc#" I I "Off"

Figure 69. OUT Relation for con_Red_Light

conRedLight H out Light Switch--- --- -- -- -. 7-:: -:::!----,.
"On" ["2#lxxxxxxx#"

"Off" "2#0xrxxxxx#"

Figure 70. OUT' for conRed.Light

timingLightSwitch =
Device 'Continuous'
Tolerance N/A
Delay 500ms

App.2.13 CAssSAILoRJINMFACE

The classSailorInterface requirements class encapsulates monitored variable monEmergency Button.

107

Appendix: HAS Buoy Case Study

App.2.13.1 IN and OUT Relations

Figure 71 illustrates the IN relation for mon EmergencyButton. Figure 72 illustrates the inverse of
the IN value function for monEmergencyButton.

Event in Button Indicator
-------------------------------- t-----------------

eventEmergency.Button Pressed ! "2#1,ooaaxc#"

event.EmergencyButton Released I I "2#0xPxaxx#"as

Figure 71. IN Relation for monEmergencyButton

6i
Event I I -monEmergencyButton

--------------------- a----------- ------- ------------------
-------------------------- a~------------- -----------------------

4I

event Button-IndicatorSet "Pressed"
a a
* a

eventButtonIndicatorReset : "Released"

Figure 72. IN' for mon.EmergencyButton

timing_EmergencyButton =

Device "Active"
Events: eventEmergencyButtonPressed,

eventEmergencyButton_Released
Tolerance N/A
Delay lOOms

App.2.14 Ormm DATA DICToINARY ENTReES

This section contains the remaining data dictionary entries.

Angle = Degrees + Minutes + Seconds.

AngleOf = AngleOf ({X,YI) = COTAN (Y/X), X /= 0

ASCII = * ASCII(X) : ASCIIReport

NOTE: ASCII(A + B) = ASCII(A) & ASCII(B), where 0&1 implies string
concatenation

if X is of type TEMPERATURE:
Four ASCII characters, with leading '-' and zeros if necessary,
representing the temperature in degrees centigrade specified by
X;

if X is of type LOCATION: A total of 27 ASCII characters: 13 for

108

Appendix: HAS Buoy CmI Stu

latitude, 13 for longitude, separated by one space;
Latitude and longitude are each represented by the following

ASCII characters:
1-3) Degrees, with leading zeros if necessary
4) The degrees symbol (superscript o)

5-6) Minutes, with a leading zero if necessary
7) The minutes symbol (P)

8-9) Whole seconds, with a leading zero if necessary
10) Decimal point ('.')

11-12) Hundredths of seconds, with a leading zero if necessary
13) Seconds symbol ('1').

if X is of type DIRECTION:
Three ASCII characters, with leading zeros if necessary,
representing the direction in degrees from north (0 = north,
90 = east, 180 = south, 270 = west) specified by X.

if X is of type MAGNITUDE:
Three ASCII characters, with leading zeros if necessary,

representing the magnitude in knots specified by X.*

ASCII__Report 1 (Page of_Text) Number_of_Pages.

Degrees = * 0 359 *-

DigitalAngle = * A digital representation of an angle. *

DataRepresentation
5 Bytes:

Bytes 1&2: degrees latitude range 0 .. 65_535, unsigned integer
Byte 3: minutes latitude range 0 .. 255, unsigned integer
Byte 4: whole seconds latitude range 0 .. 255, unsigned integer
Byte 5: 1/100th seconds latitude range 0 .. 255, unsigned integer

Direction =
* 0 .. 359 degrees (0 = north, 90 = east, 180 = south, 270 = west). *

ErrorCorrection = * A measure of length in kilometers, range -128 .. 127. *

InMode =

InMode(S) :BOOLEAN := (modeSystemMode = S)

Location = <Latitude>Angle + <Longitude>Angle .

Magnitude = * Nautical miles per hour, range 0 .. 250. *

Minutes * 0 .. 59. *

NumberofPages = * The total number of Pageof-Text report pages to be
transmitted (range 1 .. 16). *

Page_Count =
Bits 0-3: 4-bits range 1 . 16 representing total number of pages in

109

Appendix HAS Buoy Cue Study

message
Bits 4-7: 4-bits range 1 .. 16 representing number of page being

transmitted

Page-ofText = * 510 bytes of ASCII text. *

Report-Code = 0 2#10000001#m I "2#10000010#" I "2#10000011#"
"1 -2#10000100#- I -2#10000101#- 1 -2#0xxxxxxx#-]

Report-Type =
"[SOSReport" "Wind_and_TemperatureReport'

I "AirplaneDetailedReport' I "ShipDetailed-Report"
I "WeatherHistoryReport" I 'None" 3.

Seconds = * 0.00 .. 59.99 *

Sensor * range of values 0..255 *

t = * current time *

Temperature = * -100 .. 100 degrees centigrade. *

APP.3 PROCESS STRUCTURE

This section contains the ADARTS process structure that was built from the CoRE specification for
the HAS Buoy problem. The notation for representing process architecture diagrams is based upon
a mapping to teamwork Ada Structure Graph notation described in Kirk and Wild (1992).

This section is divided into the following four subsections:

"* Section App.3.1 contains the initial process architecture diagram created by mapping artifacts
of the CoRE software requirements specification to ADARTS processes.

"* Section App.3.2 contains the process behavior specifications corresponding to the processes
on the initial process architecture diagram.

"* Section App.3.3 contains the process architecture diagram that resulted from applying the
ADARTS process clustering criteria to the processes on the initial process architecture dia-
gram.

"* Section App.3.4 contains the process behavior specifications corresponding to the processes
on the final process architecture diagram.

App.3.1 INmAL PRoC•s Acrrcrun DIAGRAM

Figure 73 illustrates the ADARTS initial process architecture diagram derived from the CoRE
specification. The process behavior specifications in Section App.3.2 describe how the criteria applied
in deriving the set of processes. Note that the arrows between processes on the initial process architec-
ture diagram do not indicate message passing or invocation - they simply indicate data dependencies
or data flow between processes. Message communication will be specified after clustering processes.

Ito

Appendir HAS Buoy Cawe Study

IIS E

r ,- IQ

.4

I
I X

IS
I!P 0) I

OR c

I~ uNs

I~' A ~ U

U It

-it

Is

sotr
-1

Vl

A."endix• HAS Buoy Case Study

App.3.2 INITIAL PRocEss BEHAVIOR SPECIFICATIONS

This section contains the process behavior specifications associated with the processes on the initial
process architecture diagram in Figure 73. Note that teamwork state-event matrices (SEMs) and pro-
cess activation tables (PATs) were used to specify the logic of processes in stimulus/response form. Sec-
tions App.3.2.1 through App.3.2.27 each contain a process behavior specification corresponding to
one of the processes on the initial process architecture diagram.

App.3.2.1 DetermineWindDirection

Requirements: INRelation_for_mon_Wind,
term_Wind_Vector

Criteria: Determine_WindDirection is an INt process
Inputs: Wind_Sensors message

Outputs: WindDirection data
Frequency: once per 30 seconds
Execution Time:
Priority: Medium
Errors Detected: None
Logic: See Figure 74

Stimulus Response

-I---------------------------- --

North <- - Wind Sensors(C1)
South <- - Wind-Sensors(C2)
East <- - Wind _ensors(C3)
West <-- WindSensors(C4)
Wind Direction <--

if (West > 0) AND (South > 0) then use ROUND(INVTAN(West / South) + 180)
received Windsensors elsif est > 0) AND (North > 0) then use ROUND(INVTAN(North / West) + 270)

elsif (East > 0) AND (North > 0) then use ROUND(INVTAN(East / North))
elsif (East > 0) AND (South > 0) then use ROUND(INVTAN(South /East) + 90)
elsif (West < = 0) AND (East < = 0) AND (South > 0) then use 180
elsif (West < = 0) AND (East < = 0) AND (South < = 0) then use 0

write Wind Direction to the Wind Direction data store
Am -

Figure 74. Process Logic for Determine Wind Direction

App.3.2.2 DetermineWindMagnitude

Requirements: INRelationformon_Wind,
termWindVector

Criteria: DetermineWindMagnitude is an INt process
Inputs: WindSensors message
Outputs: WindMagnitude data
Frequency: once per 30 seconds
Execution Time:
Priority: Medium
Errors Detected: None
Logic: See Figure 75

App.3.2.3 Determine AirTemperature

Requirements: IN_Relation_for_mon_Air_Temperature,
Criteria: DetermineAirTemperature is an INt process

112

Appendix: HAS Buoy Case Study

Stimulus Response

to North -- Wind Sensors(C1)
South<-- Wind-SensoC(2)

at East <-- Windensors(OI)
West < - - WidSenors(C4)
Wind Magnitude <--

if (West > 0) AND (South > 0) use SQRT(SQUARE(South) + SQUARE(West))elsff (West > 0) AND (North > 0) use SQRT(SQUARE(North) + SQUARE(West))

received Wind Sensors ceit East > 0) AND (North > 0) use SQRT(SQUARE(North) + SQUARE(East))
- echit East > 0) and (South > 0) use SQRT(SQUARE(South) + SQUARE(East))

i West<-= 0) AND (East <= 0) AND (South >0) use South
elsif JWest <0) AND (East <= 0) AND North >0) use North
elsif North< =0) AND (South<=) AND (East >) use East
eift North<:0) AND (South <0)AND(West > 0) use West
elsif North <= 0) AND (South <= 0) AND (East <= 0) AND (West < 0) use 0

write Win Magnitude to Wind Magnitude data store

Figure 75. Process Logic for DetermineWindMagnitude

Inputs: Air_Temperature_Sensor message
Outputs: Air_Temperature data
Frequency: twice per 10 seconds (1 per air temperature sensor)
Execution Time:
Priority: Medium
Errors Detected: None
Logic: See Figure 76

Stimulus Is Response 1
,----------.-----=--z---_-----z.-%-Z-Zz:Z•ZZZZ•ZZZ••• Z........

SAir Temperature <- - 200 x (Air Temperature Sensor 1- 128) /256 - 100recedved Air Temperature-Sensor 1 wrire Air Temperature to the Air Temperature ffata store

Figure 76. Process Logic for DetermineAirTemperature

App.3.2.4 Determine-Water "Tmperature

Requirements: IN_Relation_f or_mon_WaterTemperature,
Criteria: Determine_WaterTemperature is an INt process
Inputs: Water_TemperatureSensor message
Outputs: Water_Temperature data
Frequency: twice per 10 seconds (1 per water temperature sensor)
Execution Time:
Priority: Medium
Errors Detected: None
Logic: See Figure 77

•1;;

stimulus is Response------------ ------------ 1-.-41 - --
-- -- --- - -- -- - -- - -- - 4 ---- --- --- --- -- '--- - - - - - ------- ' ' '' ' ' '-------- ------

received Water b"T.perature Sensor WaterTemperature < - - (104 x Water Temperature Sensor) / 255 - 4S........ _.... v- ... •.]write Water Temperature to the Water Temperature d~ata store

Figure 77. Process Logic for DetermineWater7bmperature

113

Appendix: HAS Buoy Case Study

App.32.S DetermineBuoyLocation

Requirements: IN_Relation_formon_Buoy..Location,

Criteria: DetermineBuoyLocation is an INt process

Inputs: OmegaSystemInput message,

OmegaError message
Outputs: Buoy-Location data

Frequency: once per 30 seconds for OmegaSysternInput,

see DDE eventIncomingRadioMessage-7
Execution Time:
Priority: Medium
Errors Detected: None
Logic: See Figure 78

Si
Stimulus , Response

--- --------------. I-------------------------------------- ----------
BuoyLocation.Latitude <- -

(egrees < = MAX(<Latitude>OmegaSystemnlnput.Bytes 1&2, 359),
Minutes <= MAX (<Latitude>Qme •aystem Input.Byte 3,59),

Seconds <= NAX(<Latitude>Oniega-Systemlnput.Byte_. 59) +
MAX(<Latitude>OmegaS-stymIn-put.Byte..5,_) / 100),

Buoy Location.Longitude <- -
received OmegaSystemInput: (Degrees <= MAX(<Longitude>Omega System InputBytes 1&2, 359),

Minutes <= MAX(<Longitude >Omega System Input.Byte-3, 59),
Seconds < = MAX(<Longjtude>QOmega-System Input.Byte -4, 59) +

MAX(<Longitude>Omega Sstem IiiputByte 5,-90) /100)
SBuoy Location <- - Adjust for Error (Buoy Location, (Omega*,Erroir)

i writebuoy Location to Buoy.Location data store

received OmegaError store OmegaError locally for future calculations of BuoyLocation

Figure 78. Process Logic for DetermineBuoyLocation

App-3.2.6 DetermineEmergencyButton

Requirements: INRelationformon_Emergency.Button,
Criteria: DetermineEmergencyButton is an INt process
Inputs: ButtonIndicator message
Outputs: EmergencyButton message
Frequency: see DDEs for eventEmergencyButtonPressed and

event_EmergencyButtonReleased
Execution Time:
Priority: Medium
Errors Detected: None
Logic: See Figure 79

Stimulus , Response
--------------------- r -----

---------------------- ,- -------- -- - - - - - -

if (ButtonIndicator = 2#1x=xwx#) then
Emergency Button <- - "Pressed"
send EmergencyButton to Determine.SystemMode

received Button.Indicator else
Emergency Button <- - "Released"

Figure 79. Process Logic for Determine.EmergencyButton

114

Appendix: HAS Buoy Case Study

App3.2.7 DetermineVesselRequest

Requirements: IN,_Relation_for_mon_VesselRequest,
Criteria: Determine_VesselRequest is an INt process
Inputs: IncomingRadio_Message message
Outputs: Vessel_Request message
Frequency: see DDEs for eventIncomingRadio._Message_3,

event_IncomingRadioMessage_4, and
eventIncomingRadioMessage_5

Execution Time:
Priority: Medium
Errors Detected: None
Logic: See Figure 80

Stimulus Response
------------------..
------------------ LA--------------------------L&---

SI

case IncomingRadio.Message is
when 3 = >

VesselRequest <- - "HistozyReport_Request"
send VesselRequest to Generate iistoryReport

when 4 = >
r~eeived ncomig R•o.Message Vessel Request <- - "Airplane Detailed Report Request"

send VesselRequest to GenerateAirplane_DetailedReport
when 5 =>

VesseLRequest <- - "Ship Detailed Report Request"
send VesseLRequest to Generate Ship Detailed Report

Figure 80. Process Logic for DetermineVesseLRequest

App-3.2.8 GeneratePeriodicReports

Requirements: REQRelation_for-con._Report,
terLSOSReport,
termWind_and_TemperatureReport

Criteria: GeneratePeriodicReports is a REQ process
Inputs: SystemMode message,

Buoy-Location data,
Air_Temperature data,
WaterTemperature data,
WindMagnitude data,
Wind_Direction data,
Time_60 event

Outputs: Report message
Frequency: See DDE for behaviorof-conReport
Execution Time:
Priority: High
Errors Detected: None
Logic: See Figure 81

App3.2.9 ProcessjRedightRequest

Requirements: REQRelationforcon_Red._Light
Criteria: ProcessRedLightRequest is a REQ process
Inputs: Light_Commuand message

115

Appendix: HAS Buoy Case Study

Stimulus H ResponseI,

if (SystemMode = "modeSOS") then
Report.ReportVIkp <- - "SOS Report"
SOS Report <- - read Buoy Location data store
Report.ASCIIReport <-- ASCII(SOS. Report)
send Report to Set OutgoingRadioMessageValue

elsif (System Mode = "mode Normal") then
Report.Repor lype < - -- "Wind and Temperature..Report"
read Water Temperature values from WaterTemperature data store
calculate termAveraged Water Temperature
read Air Temperature values from Air Temperature data store
calculate term AveragedAir Temperature

when Time 60 read Wind Direction values from Wind Direction data store
calculate termAveraged Wind Direction
read Wind Magnitude from Wind Magnitude data store
calculate erm Averaged Wind Magniutde
Wind and Temperature Report <-- (

term AveragedWatr Temperature, term AveragedAir Temperature,
term AveragedWid "Direction, term AveragedWindM agnitude)

Report.ASCIl Report = ACII(Wind and.Temperature,_Report)
send Report to Set OutgoingRadioesage..Value
write Report to the ReportHistory data store

U'

received System-Mode store current System-Mode locally

Figure 81. Process Logic for GeneratePeriodic.Reports

Outputs: Red_Light message

Frequency: See DDE for behaviorfor_con_Red. Light
Execution Time:
Priority: Medium
Errors Detected: None
Logic: See Figure 82

Stimulus ,, Response

--------------- H--------------------------------
if (mon Light Command = "RedLightOn") then

RedOLight <-- "On"
received Light-Command : else

, Red.Light <-- "Off"
H send Red _Light to Set Light Switch Value

Figure 82. Process Logic for Process-Red_LightRequest

App.3.2.10 Monitor.Air_TemperatureSensorsMutiple

Requirements: inAir_Temperature_Sensor, and
INRelation_for_monAir_Temperature

Criteria: Monitor_AirTemperatureSensorsyultiple is an entity
modeling INs process. There is one instance of this
process for each of the two air temperature sensors.

Inputs: AirTemperatureSensor data,
Time_10 event

Outputs: AirTemperature_Sensor message

Frequency: every 10 seconds
Execution Time:

116

Appendix: HAS Buoy Case Study

Priority: Medium
Errors Detected: None
Logic: See Figure 83

1;1
Stimulus to Response

--------- --------------1----------------------------------
----------- --

wAir Temperature Sensor <- -- Read (RegisterBI or RegisterB2)when TimeT I0 , ,r-whenmeO , send Air Temperature Sensor to Determine Air Temperature

Figure 83. Process Logic for MonitorAirTemperatureSensorsMultiple

App.3.2.11 MonitorWindSensors

Requirements: inWindSensors,
INRelation_for_monWind

Criteria: Monitor_WindSensors is an INs process
Inputs: WindSensors data,

Time_30 event
Outputs: Wind_Sensors message
Frequency: every 30 seconds
Execution Time:
Priority: Medium
Errors Detected: Wind sensors device error
Logic: See Figure 84

Stimulus : Response
--------------...

-------- a----------------------------------- ------'I-i

Wind Sensors.North <-- Read(RegiserCl)
Wnmd-Sensors.South <--Read(RegisterC2)
Wind Sensors.East <-- Read(RegisterC3)
Wind Sensors.West <-- Read(RegisterC4)

when Time 30 if ((Wind Sensors.North > 0) AND (Wind Sensors.South > 0)) OR
((Wind-Sensors.East > 0) AND (Wind Sensors.West > 0)) then

- there is'a device errorelse
send Wind Sensors to Determine Wind Magnitude

_ send Wind-Sensors to DetermineWindDirection

Figure 84. Process Logic for Monitor Wind Sensors

App3.2.12 MonitorWaterTemperatureSensorsMultiple

Requirements: inWaterTemperature_Sensor, and
IN_Relation_for_mon_Water_.Temperature

Criteria: Monitor_Water_TemperatureSensors_Multiple is an entity
modeling INs process. There is one instance of this
process for each of the two water temperature sensors.

Inputs: WaterTemperatureSensor data,
Time_10 event

Outputs: Water_TemperatureSensor message
Frequency: every 10 seconds
Execution Time:
Priority: Medium

117

AfppndiE HAS Buoy Cane Study

Errors Detected: None
Logic: See Figure 85

;I
Stimulus .aResponse

rT-- - a*Water Teprtr esr<-- Read (RegisterAl or RegisterA2)
when Time 10 1I a asend WaterTemperature Sensor to DetermfineWaterTemperature

Figure 85. Process Logic for Monitor Water Temperature.Sensors..Multiple

App.3.2.13 Monitor location-Correctionjhata

Requirements: inLocationCorrection_Data,
INRelation_for_monl_OmegaError

Criteria: MonitorLocation.CorrectionData is an INs process
Inputs: Incoming...RadioMessage data,

Receiver_Interrupt event
Outputs: LocationCorrection__Data message
Frequency: See DDE for eventlIncoming_.RadioMessage_7
Execution Time:
Priority: Medium
Errors Detected: None
Logic: See Figure 86

stimulus HResponse
------ I.-------------------------------------- r

HRead (RegisterP)
aaif (RegisterF.Bytel 1 16#07#) then

received Receiver-Interrupt :: Location Coriection..Data~u < - - RegisterF.Byte -2
Location Correction Data]l < - - RegisterEByte 3

I I send Location. Correc~tion Data to Determine,_Omega Error

Figure 86. Process Logic for Monitor Location Correction Data

App.3..14 Monitor.OmegaSystemnjuput

Requirements: in-megaSystem-lnput,
IN_Relation_for~mon-Buoy-Location

Criteria: MonitorOmegaSystexrlnput is an INs process
Inputs: OmegaSystemlnput data,

Time_30 event
Outputs: Omega...System-lnput message
Frequency: every 30 seconds
Execution Time:
Priority: Medium
Errors Detected: None
Logic: See Figure 87

App.3.2.15 Monitor.IncomingRadioýMessages

Requirements: inIncoming-..RadioMessage,
IN...Relation~forý_monResetSOS,

Appendix: HAS Buoy Case Study

Stimulus Response

- .---------------- ----

Omega -SystemjInput < - - read(RegisterD) where
(Latitude.Degrees < - - RegisterD.Bytes_1&2
Latitude.Minutes < - - RegisterD.Byte 3

*s Latitude.Seconds < - - RegisterD.Byte-4
* Latitude.Hundredths < - - RegisterD.Byte_5

when Time 30 a: Longitude.Degrees <--RegisterD.Bytes_6&7
Longitude.Moinutes < - - RegisterD.Byte .8

* Longitude.Seconds < - - RegisterD.Bytc..9
1 ~Longtitude.H4undredths < - - RegisterD.Byte .10)
send OmegaSystem_ Input to Deters ineBuoyX:ocation

Figure 87. Process Logic for Monitor QmegajystemlInput

INý_Relation_f or-mon_OmegaError,
IN__Relation_for_mon_VesselReqluest,
IN_Relation-for-monLight_Command

Criteria: MonitorIncoming-RadiojXessages is an INs process
Inputs: Incoming..y.adio-Message data,

Receiver_Interrupt event
Outputs: Incoming-RadioXessage message
Frequency: see DDEs for eventIncoming_.RadioMessage~l,

eventIncoming....RadioMessage_2,
event_Incoming-Radioý_Message_3,
event_Incoming.yadio_.Message...4,
event_IncomingRadio_Message...5,
and event_Incoming...RadiojMessage_6

Execution Time:
Priority: Medium
Errors Detected: None
Logic: See Figure 88

Stimulus Response
----- ---- 44 ----------------------------- --- ---------

iRead (RegisterF)
case RegisterEByte I is
* when 16#O1 =

Incoimin&.Radio NMessa e.Byte1l < -- "Red Light On"
send Incomingj~adio-vaessage to Determinej..igiit -Command

when 16#02#= >
IncomingRadio Messaae.Byte I < -- "Red LighitOff"

sen Icmnkai sgeto Determine -LightCommand

Incomingjladio Messaae.Byte_1 < - - "IHstory Report Request"
received Receiver InterruptU send Incorningj~adio.Mcssage to Determine- sel'Request

IncominL~adio Message.Byte I < - - "Airln eDetailedReportRequest"
send Incomingfladiojvfessagelto DetermineVesseLRequest

when 16#05# =>
IcomingRadio Message.Byte 1< -- "Ship Detailed ReportRequest"

a: send Inoming-)Udio Messigelto Determine VesselRequest
when 16#06 = >

IncominLRadio Messaae.Bytel < -- '"Terminate SOS Signal"
send Incomining1ladio Message to Determine Resef JSOS'::when 16#07# => null -: -handled by Monitor-jocation-CorrectionData

Figure 88. Process Logic for Monitor ThcomingRadioyessages

119

Appendi: HAS Buoy Case Study

App3.2.16 MonitorButtonjndicator

Requirements: inButtonIndicator,
INRelationfor_monEmergencyButton

Criteria: Monitor_ButtonIndicator is an INs process
Inputs: ButtonIndicator data,

ButtonInterrupt event
Outputs: Button_Indicator message
Frequency: see DDEs for event_Emergency._ButtonPressed and

event_Emergency_ButtonReleased
Execution Time:
Priority: Medium
Errors Detected: None
Logic: See Figure 89

Stimulus I Response

receiedButtonInterrupt read ButtonIndicator from RegisterE

mII send Button Indicator to Determine.EmergencyButton

Figure 89. Process Logic for Monitor-Button..ndicator

App3.2.17 Set.Outgoing.Radio..MessageValue

Requirements: OUTRelationforconReport,
Criteria: SetOutgoingRadioMessageYalue is an OUTt process
Inputs: Report message
Outputs: OutgoingRadioMessage message
Frequency: See DDE for behavior_for..conReport
Execution Time:
Priority: High
Errors Detected: None
Logic: See Figure 90 (Note: Prioritization of reports must

be enforced.)

App.3.2.18 Setj..ightSwitch.Value

Requirements: OUTRelationforconRedLight
Criteria: SetLight_SwitchValue is an OUTt process
Inputs: RedLight message
Outputs: LightSwitch message
Frequency: See DDE for behaviorofconRedLight
Execution Time:
Priority: Medium
Errors Detected: None
Logic: See Figure 91

App-.3.219 DetermineSystemMode

Requirements: ModeMachineforSystem_Mode
Criteria: DetermineSystem_Mode is a mode process

120

Appendix: HAS Buoy Case Study

SIStimulus Response
- r

case Report.Report Iype is
when "SOS Repiort" = >

Page Count <- - Length (ReportASCIIReport) /510
Outgoing.RadioMessage.ReportCode <-- 2#10000001#
Outgoing.Radio Message.Page Count.Bits0-3 <- - Page Count
for Iterator in I .-PageCount loop

Outgoing_Radio_- Message.Page..Count.Bits4-7 <- - Iterator
Outgoing.Radio Message.Bytes_3-512 <- -

Report.ASII Report(((Page Number-I) * 510) + 1..
(Page Number * 510))

send OutgoingRadio..Message to Send Outgoing.RadioMessage
S whend for loop

received Report when "WindandTemperature Report" = >- - do same as for "SOS.Report" except assign 2#10000010# to

- - - OutgoingRadioMessage.ReportCode
when "Airplane Detailed Report" = >

-- do same a for "SO§_Report" except assign 2#10000011# to
-- OutgoingRadioMessage.ReportCode

when "Ship Detailed Report" =>
- - do saie as for 7SOS Report" except assign 2#10000100# to
- - OutgoingRadio Uessage.Report Code

when "Weather History Report" = >
-- do same as for "S6S Report" except assign 2#10000101# to
-- Outgoing.Radio. essage.ReportCode

Figure 90. Process Logic for Set.Outgoin.Radio..MessageValue

Stimulus a, Response
------------- - ----- ::- - - - - aI---------------------- ---------- -----------I-.

if (Redlight = "On") then
Light Switch <-- 2#lmoaxxx#

received Red.Light elsif (Re3Liht = "Off") then
light Switch <--2- 2#oow=c#

send Light Switch to ControlLightSwitch

Figure 91. Process Logic for SetLightSwitchValue

Inputs: Reset_SOS message,
Emergency-Button message

Outputs: SystemLMode message
Frequency: See DDEs for eventIncomingRadioMessage_6 and

event_EmergencyButton_Pressed
Execution Time:
Priority: Medium
Errors Detected: None
Logic: See Figure 92

App.3.2.20 GenerateHistoryReport

Requirements: REQ_Relation for_conReport,
term_Weather_HistoryReport

Criteria: GenerateHistoryReport is a REQ process
Inputs: VesselRequest message,

Report-History data
Outputs: Report message

121

Appendix: HAS Buoy Case Study

Stimulus I # Response

* if (System Mode = "mode Normal") then
received (EmergencyButton = "Pressed") : System_Mode <- - "mode SOS"

__mI send SystemMode to Generate Periodic Reports

if (System Mode = "modeSOS") then
received (Reset-SOS = 'Ihae") System Mode <- - "mode Normal"

send Sy'stemMode to Generate.PeriodicReports
I I

Figure 92. Process Logic for DetermineSystemMode

Frequency: See DDE for behaviorof-conReport
Execution Time:
Priority: Low

Errors Detected: None
Logic: See Figure 93

Stimulus , Response

------ 1--rr

i[Report.Report Type <-- "Weather History Report"
received (Vessel Request = m ReportASCHI Report <- - read Weather isitory Report from

"HistoryReportRequest") the Reportjiistory data store and convert to ASCII
' send Report to Set.Outgoing_Radioj_Message._Value

Figure 93. Process Logic for GenerateHistoryReport

App.3.2.21 GenerateShipDetailedReport

Requirements: REQRelation_forcon_Report,
termShip_.DetailedReport

Criteria: GenerateShipDetailedReport is a REQ process
Inputs: Vessel_Request message,

Buoy_Location data,
Air_Temperature data,
Water_Temperature data,
Wind_Magnitude data,
WindDirection data

Outputs: Report message
Frequency: See DDE for behaviorforconReport
Execution Time:
Priority: Medium
Errors Detected: None
Logic: See Figure 94

App.3.2.22 Generate AirplaneDetailedReport

Requirements: REQRelation-forconReport,
termAirplaneDetailedReport

Criteria: Generate-AirplaneDetailedReport is a REQ process
Inputs: Vessel-Request message,

Buoy-Location data,

AirTemperature data,

122

Appendi HAS Buoy Cas Study

Stimulus Response
.11-- f------------------------ ------------

01 Report.ReportType <- - "ShipDetailedReport"
SBuoy Location <- - get Buoy 1location
read Water Temperature value-from Water Temperature data btore
calculate term Averaged Water Temperature
read Air Temperature vaIues from Air Temperature data store
calculatiterm Averaged Air Temperiture
read Wind Direction valies from Wind Direction data store

received (VesselRequest 8 calculate term Averaged Wind Direction
"Ship DetailedReportRequest") : read Wind Mignitude from Wind Magnitude data store

tm calculate term Averaged Wind Magnf tude
term Ship Detailed Repxort < - (Buoy Location,

"termAveraged Water Temperature,
termAveraged Air Temperature,
termAveragedWindDirection,
termAveraged_WindcMagnitude)

ReportASCIIReport <- - ASCII(termShipDetailedReport)
send Report to Set Outgoing_RadioMdessage4Value

I I

Figure 94. Process Logic for GenerateShipDetailedReport

WaterTemperature data,
Wind_Magnitude data,
Wind_Direction data

Outputs: Report message
Frequency: See DDE for behavior_for-conReport

Execution Time:
Priority: Medium

Errors Detected: None
Logic: See Figure 95

Stimulus Rs

----------------------------------..

received (Vessel Request = 'Report.Report_'lype <-- "AirplaneDetailedReport"
"AirplaneDeiil edReportRequest"): , - generate the same report as generated by

-- Generate.Ship Detailed-Report
,, send Report to Set.•utgoing RadioMessage Value

Figure 95. Process Logic for GenerateAirplane..DetailedReport

App3.2.23 Send Outgoing.RadioMessage

Requirements: out_OutgoingRadioMessage,
OUT_Relationfor_conReport

Criteria: Send_OutgoingRadioMessage is an OUTs process
Inputs: OutgoingRadioMessage message
Outputs- OutgoingRadioMessage data

Frequency: See DDE for behavior_ofconReport
Execution Time:
Priority: High
Errors Detected: None
Logic: See Figure 96

App3.2.24 Control Light..Switch

Requirements: outLight_Switch,
OUT_Relation_for_con_Red_Light

123

Appendir HAS Buoy Case Study

Stimulus , , Response

recdOutgoRadio Message write Outgoing_Radio..Message to RegisterG

Figure 96. Process Logic for SendOutgoing.RadioNMessage

Criteria: ControlLightSwitch is an OUTs process
Inputs: Light-Switch message
Outputs: Light-Switch data
Frequency: See DDE for behaviorof_con_RedLight
Execution Time:
Priority: Medium
Errors Detected: None
Logic: See Figure 97

stimulus IIIResponse

------------- U.---------------------------
11

reevdLigiitSwitch i, write LigitSwitch to RegisterH
of

Figure 97. Process Logic for ControlUght.Switch

App.3.2.25 DetermineReset.SOS

Requirements: IN_Relation_for_mon_Reset_SOS,
Criteria: Determine_ResetSOS is an INt process
Inputs: IncomingRadioMessage message
Outputs: Reset_SOS message
Frequency: see DDE for event-Incoming..RadioMessage_6
Execution Time:
Priority: Medium
Errors Detected: None
Logic: See Figure 98

gII

Stimulus Response
II!

SReset SOS <-- "'fue"received (1ncomin&_Radio_Mvessage = 6) Ree SO -- te
(o send Keset.SOS to DetermineSystem Mode

Figure 98. Process Logic for DetermineResetSOS

App.3.2.26 Determine.Light_Command

Requirements: IN_Relation_for_monLight_Command,
Criteria: DetermineLightCommand is an INt process
Inputs: IncomingRadio_Message message
Outputs: Light-Com•nand message
Frequency: see DDEs for eventIncomingRadioMessage-1, and

event_IncomingRadio_Message 2
Execution Time:
Priority: Medium

124

Appendix: HAS Buoy Case Study

Errors Detected: None
Logic: See Figure 99

Stimulus Response
I,

---- -- ---
..................................---m ight Command <-- "Red Liht On"

received (IncomingRadio..Message = 1) 1 Legh Command to ress-gt htROus
send Light Command to ProcessgRLightOfRequest,

received (Incoming Radio Message = 2) sd LightCommand <-t- "Red oight h ff"
*,send Eight Command to Poc~ess.Redjight.Request

Figure 99. Process Logic for DetermineLjght.Command

App.3.2.27 Determine OmegaError

Requirements: INRelation formon_.Omega.Error,
Criteria: DetermineOmegaError is an INt process
Inputs: Location_CorrectionData message
Outputs: OmegaError message
Frequency: see DDE for eventIncoming_RadiojMessage_7
Execution Time:
Priority: Medium
Errors Detected: None
Logic: See Figure 100

m;
Stimulus Response

I !

Omega Error <- -

received Location Correction Data (Lt-Offset < = Location Correction Data.u,
roat Lon Offset < = Location Correction Data.l)

send OniegaError to DetermineBuoyLocation
I i

Figure 100. Process Logic for DetermineOmegaError

App.3.3 PlocEsS AacIrrEcTuRE DIAGRAM

Figure 101 shows the process architecture diagram that resulted from applying the ADARTS process
clustering criteria to the processes on the initial process architecture diagram in Figure 73. The pro-
cess behavior specifications in Section App.3.4 describe how and when the criteria were applied to
obtain the process architecture as illustrated in Figure 101.

App.3.4 PRoCEsS BEHAVIOR SPECIFICATIONS

This section contains the process behavior specifications associated with the processes on the process
architecture diagram in Figure 101. Note that teamwork SEMs and PATM were used to specify the logic
of processes in stimulus/response form. Sections App.3.4.1 through App.3.4.8 each contain a process
behavior specification corresponding to one of the processes on the process architecture diagram.

125

Appenduc: HAS Buoy Case Study

%So O

oa

&00
I 1 .4

OF-

~3 a'-

126Z

Appendix: HAS Buoy Case Study

App3.4.1 Process30 SecondInterrupt
Requirements: IN_Relation_for_monWind, and

term_-WindVector,

inWindSensors,
inOmegaSystemInput,
IN_Relationfor_monBuoyLocation

Criteria: DetermineWind_Direction and DetermineWind_Magnitude
(both INt processes) were clustered based on asynchronous
temporal cohesion - they were both activated by the
receipt of Wind_Sensors. The resulting process was
clustered with Monitor_WindSensors (an INs process)
based on sequential cohesion. This process was then
clustered with MonitorOmega-SystemjInput (INs process)
based on periodic temporal cohesion - they were both
activated at 30 second intervals.

Inputs: WindSensors data,
Omega.System_Input data,
Time_30 event

Outputs: WindDirection data,
WindMagnitude data,
OmegaSystemInput message

Frequency: every 30 seconds
Execution Time:
Priority: Medium
Errors Detected: Wind sensors device error
Logic: See Figure 102

App-3..2 MonitorTemperature

Requirements: IN_Relation_formon_AirrTemperature,
inAir_TemperatureSensor,
INRelation_for_mon_Water_Temperature,
inWaterTemperature_Sensor

Criteria: First, the entity modeling, INs processes defined by
MonitorAirTemperatureSensors_Multiple were clustered
into a single process using entity process inversion.
The resulting was clustered with DetermineAir_
Temperature (an INt process) based on sequential
cohesion. Then, the entity modeling, INs process
defined by Monitor_Air_Temperature_Sensors_Multiple
were also clustered into a single process using entity
process inversion. This resulting was clustered with
Determine_.AirTemperature (an INt process) based on
sequential cohesion. Finally, the two resulting
processes were clustered based on periodic temporal
cohesion - they were both activated at 10 second
intervals.

Inputs: AirTemperature_Sensor data,
Water_Temperature_Sensor data,
Time_10 event

Outputs: AirTemperature data,
Water_Temperature

127

Appendix: HAS Buoy Case Study

Stimulus I I Response

North <- - Read(RegiserCl)
South <- -Read(RegisterC2)
East <- - Read(RegisterC3)
West <- - Read(RegisterC4)
Omega.SystemInput <-- read(RegisterD) where

(Latitude.Degrees <-- RegisterD.BytesU&2
Latitude.Minutes <-- RegisterD.Byte_3
Latitude.Seconds <-- RegisterD.Byte 4
Latitude.Hundredths <- - RegisterD.ByteS5
Longitude.Degrees <- RegisterD.Bytes_6&7
Longitude.Minutes <- - RegisterD.Byte 8
Longitude.Seconds <- - RegisterD.Byte 9
Longitude.Hundredths <- - RegisterD.Byte_10)

when T'ime_30 ::send Omega System Input to Omega Queue
w if ((North > 0) AND (South > 6)) OR ((East > 0) AND (West > 0)) then

there is a device error
else

Wind Direction <---
if (West > 0) AND (South > 0) then use ROUND(INVTAN(West / South) + 180)
elsif (West > 0) AND (North > 0) then use ROUND(INVrAN(North / West) + 270)
elsif (East > 0) AND (North > 0) then use ROUND(INVTAN(East / North))
elsif (East > 0) AND (South > 0) then use ROUND(INVTAN(South / East) + 90)
elsif (West < = 0) AND (East < = 0) AND (South > 0) then use 180
elsif (West < = 0) AND (East < = 0) AND (South < = 0) then use 0

write Wind Direction to the Wind-Direction data store
Wind Magnitude <--

if ?West > 0) AND (South > 0) use SQRT(SQUARE(South) + SQUARE(West))
elsif (West > 0) AND (North > 0) use SQRT(SQUARE(North) + SQUARE(West))
elsif (East > 0) AND (North > 0) use SQRT(SQUARE(North) + SQUARE(East))
elsif (East > 0) and (South > 0) use SQRT(SQUARE(South) + SQUARE(East))
elsff (West < = 0) AND (East < = 0) AND (South > 0) use South
elsif (West < = 0) AND (East <- =0) AND (North > 0) use North
elsif (North < = 0) AND (South < = 0) AND (East > 0) use East

H elsif (North < = 0) AND (South < = 0) AND (West > 0) use West
elsif (North < = 0) AND (South < = 0) AND (East < = 0) AND (West < =0) use 0

write Wind Magnitude to WindMagnitude data store

Figure 102. Process Logic for Process_30_SecondInterrupt

Frequency: every 10 seconds
Execution Time.
Priority: Medium
Errors Detected: None
Logic: See Figure 103

App.3.4.3 DetermineBuoyLocation

Requirements: IN_Relation_for_monBuoy-Location,
Criteria: DetermineBuoyLocation is an INt process
Inputs: OmegaSystemjInput message,

Omega-Error message
Outputs: Buoy-Location data
Frequency: once per 30 seconds for OmegaSystemInput,

see DDE eventIncoming-Radio-Message_7
Execution Time:
Priority: Medium
Errors Detected: None
Logic: See Figure 104

128

Appendix: HAS Buoy Case Study

Stimulus ResponseII

rt

AirTemperature Sensor <- - Read (RegisterBI)
Air Temperature <- - 200 x (AirTemperature.Sensor + 128) / 256 - 100
write Air Temperature to the AirTemperature data store
Air_TemperatureSensor <-_- Read (RegisterB2)
Air Temperature <-- 200 x (Air Temperature Sensor + 128)/256 - 100
write Air Temperature to the AirTemperature data store

when Time_10 WaterTemperature-Sensor <- - Read (RegisterAl)
Water7-Temperature <- - (104 x Water Temperature Sensorl) /255 - 4
write Water Temperature to the Water..Temperature data store
WaterTemperatureSensor <- - Read (RegisterA2)
Water Temperature <-- (104 x Water TemperatureSensor.) I 255 - 4
write Water Temperature to the Water-Temperature data store

Figure 103. Process Logic for Monitor-Temperature

1;

Stimulus H Response
----------- t...

iget next entry from Omega Queue
if entry is Omega System mnput then

BuoykLocation.LatitudF <f
(iegrees <= MAX(<_Latitude>Omega System Input.Bytes 1&2, 359),
Minutes <= MA_(<Latitude>Omega-system Input.Byte_3, 59),
Seconds < = MAX(<Latitude>Omega "System Input.Byte -4 59) +MAX(<Latitude>Omegau Sjtems jaiut.Byte 5,99)/100,

receivedOmeg SystemInput # Buoy Location.Lon itude <=
or OmegaSEyrtor - (< _Longitude>Omega Sytemjnput.Bytes &2, 359),

n < MAX(<Longitude>Omega System Input.Byte 3,59),
Seconds < = MAX(<Longitude> Omega"System Input.Byte_-4 59) +

MAX(<Longitude>OmegaS7stemInput.Byte. 5, 99) / 100)

Buoy Location <- - Adjust for Error (BuoyLocation, OmegaError)
writeaBuoy_Location to Buoy-Location data store

elsif entry is Omgea,_Error then
store, mega_,rror locally for future calculations of BuoyLocation

Figure 104. Process Logic for DetermineBuoyLocation

App.3.4.4 GeneratePeriodic.Reports

Requirements: REQRelation_for_conReport,
'lode MachineforSystemt._Mode,
t •rm_SOSReport,
term_Windand_TemperatureReport

Criteria: GeneratePeriodicReports (a REQ process) was clustered
with Determine_SystemMode (a mode process) based on
functional cohesion.

Inputs: Mode_Change message (ResetSOS or Emergency-Button)
BuoyLocation data,
AirTemperature data,
Water_Temperature data,

Wind_Magnitude data,
WindDirection data,
Time_60 event

Outputs: Report message

Frequency: See DDE for behavior of_conReport
Execution Time:
Priority: High

129

Appendix: HAS Buoy Case Study

Errors Detected: None
Logic: See Figure 105

ii
Stimulus is Response

-- -----.--------- --

if (SystemMode = "modeSOS") then
I , Repot.Reportype <-7- "SOSReport"
I I SOS Report <- - read Buoy Location data storeReport.ASCII_Report <- - ASCII(SOS Report)

send Report to ReportQueue
elsif (SystemMode = "mode Normal") then

i Report.Report Type <----"Wind and Temperature Report"

when Time 60 : read Water Temperature values from Waterjemperature data store
calculate ternmAveraged Water.. Temperature
read AirTbemperature values from Air Temperature data store
calculate termAveraged Air Temperiture
read Wind Direction values from Wind Direction data store
calculate te'rmAveraged Wind Direction
read WindMagnitude from Wind Magnitude data store
calculate term Averaged Wind Magniutde
Wind-andTehmperature Repoif <-- (

term Averaged Waier Temperature, term Averaged AirTbmperature,
term-Averaged-Wind -Direction, term Averaged Wind Magnitude)

SReportASCrHReport = A•CI(WindandTemperatureReport)
send Report to the Report Queue

, write Report to the ReportHistory data store,1

Sif (Mode Change = [Emergency Button = "Pressed"]) thenS•if (SystemM~ode = "modeNormal") then

System-Mode <- - "mode SOS"
received Mode-Change I if (Mode..Change = [Reset SOS= "TRue"]) then

Sif (SystemMode = "mole SOS") then
_ 1 System.Mode <-- "mode Normal"

Figure 105. Process Logic for GeneratePeriodicReports

App3.4.5 Process.ReceiverInterrupt

Requirements: inIncomingRadio-Message,
in_LocationCorrectionData,
IN_Relation_for-mon_ResetSOS,
IN_Relation_formon_OmegaError,
INRelation_formonVesselRequest,
INRelation_for.monLight_Command,
REQ.Relation-forcon-RedLight,
OUTRelation_ ,r_con_Red_Light,
outLight_Switch

Criteria: Monitor_IncomingRadioMessages (an INs process) and
Monitor_Location_CorrectionData (an INs process) were
clustered based on asynchronous temporal cohesion - they
were both activated by ReceiverInterrupt. The resulting
process was clustered with DetermineOmegaError (an INt
process) based on sequential cohesion. Again, the
resulting process was clustered with the following
processes, all based on sequential cohesion:
DetermineLight_Command (an INt process),
ProcessRedLightRequest (a REQ process),
Set-LightSwitchValue (an OUTt process), and

130

Appendix: HAS Buoy Case Study

ControlLightSwitch (an OUTs process). Sequential
cohesion was then applied to complete the clustering with
DetermineReset_SOS (an INt process) and
Determine_VesselRequest (an INt process)..

Inputs: IncomingRadioMessage data,
Receiver_Interrupt event

Outputs: IncomingRadioMessage message,
OmegaError message,
Reset-SOS message,
VesselRequest message,
LightSwitch data

Frequency: see DDEs for event_IncomingRadioMessagej,
event_IncomingRadio_Message_2,
eventIncoming_RadioMessage-3,
event_IncomingRadio_Message_4,
eventIncomingRadio_Message-5,
eventIncomingRadio_Message_6,
event_IncomingRadio_Message_7, and
behavior_ofconRed.Light,

Execution Time:
Priority: Medium
Errors Detected: None
Logic: See Figure 106

Stimulus ,, ResponseI I
---------- ,,------------------------

--------------. 44--

"Read (RegisterF)
H case RegisterFEByte.l is

when 16#01# =>
Light-Switch <-- 2#lxxxxm#
write Light Switch to RegisterH

when 16#02#= >
Light Switch <-- 2#Oxum#
writeLight Switch to RegisterH

when 16#03=>
Vessel Request <- - "History ReportRequest"

received Receiverjnterrupt I send Vessel.Request to RequestQueue!
when 16#04# = >

VesselRequest < - - "Airplane Detailed Report Request"
send Vessel Request to Request-Queue

when 16#05# =>
VesseLRequest <- - "Ship Detailed Report Request"
send Vessel Request to Request Queue

when 16#06 = >
Reset SOS <-- "'kue"
send Reset SOS to Transitions-Comm

when 16#07#= >
OmegaError <- - (LatOffset < = RegisterEByte 2,

Lon Offset <= RegisterEByte_3)
send OmegaError to'OmegaQueue

Figure 106. Process Logic for ProcessReceiver interrupt

App.3.4.6 MonitorEmergency Button

Requirements: in_Button_Indicator,
INRelation_formonEmergency-Button,

131

Appendix HAS Buoy Case Study

Criteria: MonitorButton_Indicator (an INs process) and
DetermineEmergencyButton (an INt process) were
clustered based on sequential cohesion.

Inputs: Button_Indicator data,
Button_Interrupt event

Outputs: EmergencyButton message
Frequency: see DDEs for eventEmergencyButtonPressed and

event_EmergencyButton_Released
Execution Time:
Priority: Medium
Errors Detected: None
Logic: See Figure 107

Stimulus , Response
------- I--------------------------- I----------------------------------- r--------

- read Button Indicator from RegisterE
if (Button-Indicator = 2#1xxxxxcx#) then

received ButtonInterrupt : Emergency, Button <- - "Pressed"
send EmergencyButton to Transitions Comm

* else
EmergencyButton <- - "Released"

Figure 107. Process Logic for MonitorEmergencyButton

App.3.4.7 Transmit.Reports

Requirements: OUT_Relation_for_conReport,
outOutgoingRadioMessage

Criteria: SetOutgoingRadioMessageValue (an OUTt process) and
SendOutgoingRadiojMessage (an OUTs process) were
clustered based on sequential cohesion and renamed
Transmit-Reports.

Inputs: Report message
Outputs: OutgoingRadio_Message data
Frequency: See DDE for behaviorofconReport
Execution Time:
Priority: High
Errors Detected: None
Logic: See Figure 108 (Note: Prioritization of reports must be

enforced.)

App3.4.8 Generate DetailedReports

Requirements: REQRelation for-conReport,
termShipDetai led.Report,
termAirplaneDetailedReport,
term_WeatherHistoryReport

Criteria: GenerateShipDetailedReport,
GenerateAirplaneDetailedReport, and
GenerateHistoryReport (all REQ processes) were
clustered based on functional cohesion.

Inputs: VesselRequest message,
BuoyLocation data

132

Appendix HAS Buoy Case Study

Stimulus I Response
-- ------ I- f---
----------- r---

get next Report from ReportQueue
case Report.ReportI'ype is

when "SOS-Report" = >
Page Count <-- Length (Report.ASCIIReport) / 510
OutgoingRadiojMessage.ReportCode <-- 2#10000001#
OutgoinRadio-Message.PageCount.Bits.0-3 <-- PageCount
for Iterator in 1 .. Page-Count loop

OutgoingRadioMessage.Page Count.Bits4-7 <- - Iterator
Outgoing.RadioMessage.Bytes)3-512 <--

ReportAS eport(((Page Number-1) * 510) + 1..
(PageNumber * 510))t

I write Outgoin.Radio.Message to RegisterG
end for loop

received Report when "Wind and Temperature Report" = >
-- do same as-for "SOSReport except assign 2#10000010# to
- - - OutgoingRadio Message.ReportCode

when "Airplane Detailed Report" = >
-- do same a for "SO9 Report" except assign 2#10000011# to
_a - OutgoinzRadioMessage.Report=Code

when "Ship Detailed Report"- >
samdo se as for "SOSReport" except assign 2#10000100# to

am -- OutgoingRadioyMessage.ReportCode
when "Weather History Report" = >

-- do same a for "SOS.Report" except assign 2#10000101# to
_: _ OutgoingRadioMessage.ReportCode

Figure 108. Process Logic for "li'ansmitReports

Air_Temperature data,
Water_Temperature data,
Wind_Magnitude data,
WindDirection data,
Reportjiistory data

Outputs: Report message
Frequency: See DDE for behavior-for-conReport
Execution Time:
Priority: Medium
Errors Detected: None

Logic: See Figure 109

APP.4 CLASS STRUCTURE

This section contains specifications for selected classes derived from the CoRE specification of the
HAS Buoy requirements. Behavior is described formally to take advantage of CoRE's precision. How-
ever, formal descriptions are not required for class structuring in the ADARTS method.

This section uses the following prefixes i" addition to the naming conventions discussed in Section 2.7:

a "param_ N identifies a parameter to an operation.

0 "result_- identifies the result of an operation.

* "stater_" identifies an attribute of the abstract state of a class.

133

Appyndix HAS Buoy Cue Study

Stimulus Responsei I

get next VesselRequest from Request Queue
if (Vessel Request - "History Report-Request") then

Report.ReportType <-- "Weather History Report"
Report.ASCIIReport < - read Weather HistoryReport from

the Report History data store and convert to ASCII
else

Buoy Location <- - get Buoy_Location
read WaterTbmperature values from Water-Temperature data store
calculate term Averaged WaterTemperature

I I read Air'Temperature vJues from Air Temperature data store
I calculate termAveraged Airjemperature

read Wind Direction values from Wind Direction data store
received Vessel-Request calculate term AveragedWind.Direction

read WindMagnitude from WindMagnitude data store
calculate termAveraged WindMagnitude
Detailed Report <- - (Buoy Location,

term Averaged Water T'Imperature, term Averaged Air Temperature,
term AveragedWind-Direction, term Averaged Wind Magnitude)

Report.ASCIIReport <--- ASCII(Detiled.Report)
if (Vessel Request = "Airplane Detailed Report Request") then

ReporReportype <- - "'Airplane betailed Report"
elsif (Vessel Request = "Ship Detailed Reportl'equest) then

Report.Report_1lrpe < - - "ShipDetailedReport"
send Report to Report,_Queue

Figure 109. Process Logic for Generate DetailedReports

For device interface classes, the abstract state can be the input or output variable associated with the
device. In this case, the naming convention is not followed. The name of the input or output variable
is used instead.

Each parameter to an operation is associated with the CoRE artifact that the parameter represents
(e.g., approximation to monitored variable, term, etc.). It is assumed that the implementation of
classes and objects will make use of strong typing, implying a usage constraint prohibiting usage of the
wrong type of parameter. Because these usage constraints are so ubiquitous, they (and the associated
undesired events) are omitted from the specifications.

App.4.1 A1RTE)MPERTURE SENSOR DEVmCE IN'ERFACE CLASS

Name: Air_Temperature_Sensor Device Interface

Abstraction: Device interface class that defines the interface to the
air temperature sensor, and approximates the value of the Air Temper-
ature monitored variable.

Hidden Information: Details of operating the air temperature sensor
and approximating the Air Temperature monitored variable.

Anticipated Changes: None.

Requirements Traceability:

inAir_TemperatureSensor

134

Appendix: HAS Buoy Case Study

mon_Air_Temperature

In_Relation_forAir_Temperature

Object(s)

AirTemperatureSensor Device Interface object

FORMAL DESCRIPTION

Abstract State: in_Air_Temperature_Sensor

Abbreviations:

Abbreviation Definition

ValidSensor_Input -128 <= inAirTemperatureSensor <= 127

Invariants: There are no invariants

Initial Value of Abstract State: The value of inAir_Temperature_
Sensor when the system is initiated.

App.4.I.1 CalculateAirTemperature Operation

Usage Constraints: None. (IN relation states that a value is always
available).

Undesired Events: An undesired event is returned if the usage
constraint is violated.

Effects: Each time it is called, this operation retrieves the
current value of the Air Temperature Sensor input data item and uses
it to approximate the current value of the Air Temperature monitored
variable.

Requirements Traceability:

inAir_TemperatureSensor

InRelation_for_Air_Temperature

mon_Air_Temperature

FORMAL DESCRIPTION

Parameters: There are no parameters to this operation.

Results:

resultAir_-Temperature (value of -monAirTemperature)

135

Acndix: HAS Buoy Cam Study

Abbreviations: See class specification.

Behavior:

Precondition Postcondition

Valid_SensorInput resultAirTemperature =
-monAir_Temperature as defined by
IN' for monAirTemperature

Maximum Error: 0.5 degree centigrade

NOT(Valid.SensorInput) ERROR(device failure)

App.4.2 OMEGA NAVIGATIONSYSTEM DEVCE INTEFACE CLASS

Name: OmegaNavigation_System Device Interface Class

Abstraction: Device interface class encapsulating the Omega Naviga-
tion System.

Hidden Information: Details of interfacing with the Omega Navigation
System.

Anticipated Changes: Protocol for operating device

Requirements Traceability:

inOmega.SystemzInput

Object(s) Omega Navigation System Device Interface object

FORMAL DESCRIPTION

Abstract State: inomegaSystemrInput

Abbreviations: None.

Invariants: There are no invariants

Initial Value of Abstract State: The value of inOmegaSystem_Input
when the system is initiated.

AppA.2.1 Get.Omegaunput Operation

Usage Constraints: None.

Undesired Events: None.

Effects: The current value of in.OmegaSystemInput is returned.

Requirements Traceability:

136

Appendir HAS Buoy Case Study

inOmegaSystemnInput

FORMAL DESCRIPTION

Parameters: None.

Results:

resultOmegaSysteminput (value of inOmegaSystem_Input)

Abbreviations: See class specification.

Behavior:

Precondition Postcondition

TRUE result_OmegaSystem__Input =
in_Omega.System,_Input

App.4.3 WATERTEMPERATURESENSOR DEviCE INTERFACE CLASS

Name: WaterTemperature_Sensor Device Interface

Abstraction: Device interface class that defines the interface to the
water temperature sensor.

Hidden Information: Details of interfacing with a water temperature
sensor.

Anticipated Changes: The current version of the Buoy has a single
sensor for water temperature. In the future, the number of water tem-
peratures could change. For this reason, the conversion of the Water
Temperature Sensor input value to an approximation of the Water Tem-
perature monitored variable is encapsulated in a different class.

Requirements Traceability:

inWaterTemperature_Sensor

Object(s) WaterTemperatureSensor Device Interface object.

FORMAL DESCRIPTION

Abstract State: inWater_Temperature_Sensor

Abbreviations:

IAbbreviation IDefinition

ValidSensorInput -128 <= inWaterfTemperatureSensor <= 127

137

Appendix: HAS Buoy Casm Study

Invariants: There are no invariants

Initial Value of Abstract State: The value of
in_AirTemperatureSensor when the system is initiated.

App.43.1 Read-Water Temperature_Sensor Operation

Usage Constraints: None (IN relation states that a value is always
available).

Undesired Events: An error is returned if the condition

-128 <= inWaterTemperatureSensor <= 127

does not hold.

Effects: The current Water Temperature Sensor value is returned.

Requirements Traceability:

in_WaterTemperatureSensor

FORMAL DESCRIPTION

Parameters: There are no parameters.

Results:

result_Water_TemperatureSensor._Input (value of
in_Water._Temperature_Sensor)

Abbreviations: See class specification

Behavior:

Precondition Postcondition

Valid_Sensor_Input resultWater_TemperatureSensor_Input=
inWater_Temperature_Sensor

Maximum Error: 0

NOT(ValidSensor Input) ERROR(device failure)

AppA.4 WINDSENSOR D'EVE INTERFAcE CLASs

Name: WindSensor Device Interface class

Abstraction: This class abstracts the wind sensor devices.

Hidden Information: Details of reading from the wind sensors

138

Appendmi HAS Buoy Case Study

Anticipated Changes: The number of wind sensor devices may change.

Requirements Traceability:

inWindSensors

Object(s):

NorthWind_Sensor object

South,_WindSensor object

East_WindSensor object

West_WindSensor object

FORMAL DESCRIPTION

Abstract State: <X>Sensor (Input variable returned by device-see
abbreviations) 6 .

Abbreviations:

Abbreviation Definition

<X> <North> for North Wind Sensor object
<South> for South Wind Sensor object
<East> for East Wind Sensor object
<West> for West Wind Sensor object

ValidSensorInput -128 <= <X>Sensors <= 127

Invariants: There are no invariants

Initial Value of Abstract State: The value available from the
corresponding wind sensor when the system is initiated.

App.4.4.1 ReadWindSensorInput Operaion

Usage Constraints: None

Undesired Events: An error is returned of the wind sensor input
value is not in the range 0 to 255 inclusive.

Effects: The current wind sensor value for the wind sensor is
returned.

Requirements Traceability:

6. There are four objects derived from this class.The abbreviation <X> serves to distingish the abstract state of different
objects.

139

Appendwx HAS Buoy Cawe Study

inWind_Sensors

FORMAL DESCRIPTION

Parameters: None.

Results:

resultWindSensor_Value (value of <X>Sensor).

Abbreviations:

Behavior:

Precondition Postcondition

ValidSensorlInput WindSensor_Value=<X>Sensors

Maximum Error: 0

NOT(ValidSensorInput) ERROR(device failure)

App.4.5 ASCILREPoR'r DATA ABSTRCTION Cluss

Name: ASCIIReport Data Abstraction Class

Abstraction: Data abstraction class which hides the internal struc-
ture of an ASCII report.

Hidden Information: Internal structure of the report.

Anticipated Changes: No changes anticipated at this point.

Requirements Traceability:

conReport

REQ Relation for con_Report

OUT Relation for con_Report

Object(s) ASCIIReport object

FORMAL DESCRIPTION

Abstract State:

state_ASCIIReport (value of -con.Report -- a sequence of ASCII
characters)

state_NextPage (Natural number-that indicates which page is to be
returned by the GetNextPage operation.

140

Appendix: HAS Buoy Caw Study

state_PagesRemaxaining (Boolean value indicating that some pages in
the current report are yet to be returned by the GetNextPage
operation).

Abbreviations:

Abbreviation Definition

MaxNumberPages 20 pages

PageLength 1024 ASCII characters

Invariants: There are no invariants

LENGTH(stateASCII-Report) <= MaxNumber_Pages * PageLength

Initial Value of Abstract State:

state_PagesyRemaining=FALSE

App.4.5.1 SeLReport Operation

Usage Constraints: After successfully calling this operation, the
Get_NextPage operation must be called once for each page of the re-
port. Also, the length of the report must not exceed the storage
capacity of the object derived from this class.

Undesired Events: An error is returned if this operation is called
before all pages of the previous report have been returned, or if the
parameter contains too many characters.

Effects: The next report to be transmitted is recorded internally,
and the first page is available from the Get_NextPage operation.

Requirements Traceability:

con.Report

REQ Relation for con_Report

OUT Relation for conReport

FORMAL DESCRIPTION

Parameters:

paramASCIIReport (value of -con.Report)

Results: No result is returned.

Abbreviations: See class specification.

141

Appendix: HAS B" Case Study

Behavior:

Precondition Postcondition

statePagesRemaining=FALSE stateASCIIReport
AND LENGTH(param_ASCII_Report) =paramASCIIReport

< MaxReportLength AND stateNextPage=l
AND statePagesRemaining=TRUE

state_PagesRemaining=TRUE ERROR(Attempt to overwrite pre-
vious report)

LENGTH(paramu._,.ASCIIReport) ERROR(Report too long)
< MaxReportLength

AppA.5.2 GetNext-Page Operation

Usage Constraints: After calling the Set_Report operation, this
operation should be called until all pages of the report have been
returned. This operation should not be called again until after the
next successful call to Set__Report.

Undesired Events: An error is returned if the usage constraint on
sequencing is not observed.

Effects: The next page of the current report is returned. The first
page is returned if this is the first call f--lowing a call to
Set_Report.

Requirements Traceability:

con._Report

REQ Relation for conReport

OUT Relation for con_Report

FORMAL DESCRIPTION

Parameters: There are no parameters.

Results:

result_ReportPage (value: a sequence up to Page-Length ASCII
characters)

result_LastPage (boolean value-TRUE indicates that
result_ReportPage contains the last page of the current report.

Abbreviations: See class specification.

Abbreviation Definition

Low_Index PageLength*(stateNext_-Page-l)+1

High_Index MAX(Page__ILength*state_NextPage,
__ LENGTH(state_ASCIIReport))

142

Appendix: HAS Buoy Case Study

Abbreviation Definition

OnLast_Page High._Index=LENGTH(StateASCIIReport)

PageReturned state ASCII Report(Low Index..High.Index)

Behavior:

Precondition Postcondition

statePages_Remaining result._Report_Page=PageReturned
AND resultLast_Page=OnLast_Page
AND state_Pages.Remaining=

NOT (OnLastPage)

NOT(statePages.Remaining) ERROR(No more pages)

AppA.6 Buoy LOCATION DATA ABSTRACTION CLAss

Name: Buoy_Location

Abstraction: Data abstraction class encapsulating an approximation of
the current location of the buoy.

Hidden Information: Internal representation of the approximation.

Anticipated Changes: Precision of the approximation.

Requirements Traceability:

mon.BuoyLocation

Object(s)

BuoyLocation object

FORMAL DESCRIPTION

Abstract State:

stateLatitude (value of <Latitude>-monBuoy__Location)

stateLongitude (value of <Longitude>-monBuoyLocation)

state_Latitude_Defined (Boolean value-TRUE if SetLatitude
operation called at least once).

state_LongitudeDefined (Boolean value-TRUE if SetLongitude
operation called at least once).

Abbreviations: None.

143

Appendix: HAS Buoy Case Study

Invariants: None.

Initial Value of Abstract State:

state_Latitude_Defined=FALSE

state_LongitudeDefined=FALS2

Operation(s): 7

Set Latitude8 Read Latitude

Set Longitude Read Longitude

App..7 SOSREPoRT DATA ABSTRACrION CLASS

Name: SOS_Report Data Abstraction Class

Abstraction: Data abstraction class which hides the format of
-con.Report while in modeSOS (i.e., the report transmitted every 60
seconds when the buoy is in SOS mode). The report contains a field
which identifies it as an SOS report and the current location (lati-
tude and longitude) of the buoy.

Hidden Information: Format of the report.

Anticipated Changes: Format of the report.

Requirements Traceability:

conzReport

Object(s)

SOSReport object

FORMAL DESCRIPTION

Abstract State:

state_Latitude (value of <Latitude>-monBuoy.Location)

state_Longitude (value of <Longitude>-monBuoyLocation)

stateLatitudeDefined (TRUE if the Set_Latitude Operation has
been called at least once).

state_Longitude_Defined (TRUE if the Set-Longitude Operation has
been called at least once).

7. Descriptions are omitted for brevity.
8. This is similar to the SetLatitude Operation on the SOS_Report Data Abstraction Class.

144

Appendi: HAS Buoy Cae Study

Abbreviations: None.

Invariants: There are no invariants

Initial Value of Abstract State:

state_LatitudeDefined=FALSE

stateLongitudeDefined=FALSE

App.4.7.1 Set-Latitude Operation9

Usage Constraints: None.

Undesired Events: None.

Effects: The parameter to this operation is recorded in the latitude
field of the SOS report. 10

Requirements Traceability:

conReport

FORMAL DESCRIPTION

Parameters:

param_CurrentLatitude (value of <Latitude>-monBuoyLocation).

Results: No result is returned.

Abbreviations: See class specification.

Behavior:

Precondition Postcondition

TRUE state_Latitude=paramCurrent_Latitude

state_LatitudeDefined=TRUE

App.4.7.2 ASCUIFormat Operation

Usage Constraints: The buoy location must be defined before this
operation is called.

Undesired Events: An error is returned if the buoy location is not
defined.

9. The SetLongitude operation is similar and is omitted for brevity.
10. The SOS report also has a field that identifies the type of the report. Because that field is constant, there is no need for

an operation to record it.

145

Apndw HAS Buoy Can Study

Effects: An ASCII string containing the current buoy location and a
field identifying an SOS report is returned.

Requirements Traceability:

con.Report

REQRelation_for_conReport

FORMAL DESCRIPTION

Parameters: None.

Results:

resultASCII_Report (value: of -conReport.ASCIIReport -- a
sequence of ASCII characters)

Abbreviations: See class specification.

Abbreviation Definition

LocationDefined state_Latitude_Defined
AND stateLongitudeDefined

Behavior:

Precondition Postcondition

LocationDefined ASCIIReport =
ASCII(state_Latitude)

+ ASCII(state_Longitude)

NOT(LocationDefined) ERROR(Undefined Location)

App.4.8 AmRTemPERATUmREADimGS CoLua£'oN CLASS

Name: Air_Temperature_Readings Collection

Abstraction: Data collection class which stores a set of up to six
air temperature.

Hidden Information: Method of representing and iterating over the
sequence

Anticipated Changes:

Internal representation of the collection

Algorithms for averaging and modifying the collection.

Requirements Traceability:

146

Appendix: HAS Buoy Case Study

term_Averaged.Air_Temperature

Object(s)

AirTemperatureReadings object

FORMAL DESCRIPTION

Abstract State:

stateCollection (Value: A set of up to six elements. The elements
are taken from the same domain as monAir_Temperature)

Abbreviations: None.

Invariants:

SIZE(state_Collection)<6

Initial Value of Abstract State: 0

App.4.8l RecordAirTemperature Operation

Usage Constraints: None.

Undesired Events: None.

Effects: This operation adds an air temperature reading to the
collection. If the collection is already full, the oldest value is
removed to make room for the value to be added.

Requirements Traceability:

term_Averaged.Air_Temperature

FORMAL DESCRIPTION

Parameters:

param_Value -- Value to be added

Results: No result is returned.

Abbreviations: See class specification.

Behavior:

Precondition Postcondition
SIZE(state_Collection)<6 Updated_state_Collection=

state_Collection UNION {paramValue}

SIZE(state_Collection)=6 Updatedstate_Collection=
stateCollection
- OLDEST(state_Collection)
UNION fparam_Value)

147

AWcdiLx HAS Buoy Cue Study

App.4.81 ComputeAveragedAirTemperature Operation

Usage Constraints: In the requirements specification,
termAveraged__AirTemperature is defined as an average of six air tem-
perature values, implying that the collection must be full before
this operation can be invoked.

Undesired Events: An error is returned if there are fewer than Max
Size elements in the collection.

Effects: The arithmetic average of the collection is ieturned.

Requirements Traceability:

term_AveragedAirTemperature

FORMAL DESCRIPTION

Parameters: None.

Results:

resultAveraged.Air._Tenmerature (value of -term_Averaged_
Air._Temperature)

Abbreviations: None.

Behavior:

Precondition Postcondition

SIZE(stateCollection)=6 resultAveragedAirTemperature =
ROUND[SUM(stateCollection)/6]

Maximum Error: 1 degree centigrade

SIZE(state.Collection) <6 Error(Insufficient Data)

App.4.9 SYSTEMMODE STATE TRIANSrrlON CLASS

Name: System_Mode

Abstraction: State transition class which encapsulates
4odeClass_for_mode.System_Mode

Hidden Information: The modes of the mode machine and the transi-
tions between them.

Anticipated Changes: Additional modes and t :tions may be added.

Requirements Traceability:

Mode_Class_for_mode._System_Mode

148

Appendix: HAS Buoy Case Study

event_EmergencyButtonPressed

event_Reset_SOS

Object(s)

System..Mode State Transition Object

FORMAL DESCRIPTION

Abstract State:

stateSystemMode (value of -modeSystemMode)

Abbreviations: None.

Invariants: There are no invariants

Initial Value of Abstract State: stateSystem_Mode--mode_Normal

App.4.9.1 EmergencyButton.Pressed Operation

Usage Constraints: None.

Undesired Events: None.

Effects: The value of the abstract state is Emergency.

Requirements Traceability:

event_EmergencyButtonPressed

FORMAL DESCRIPTION

Parameters: None.

Results: No result is returned.

Abbreviations: See class specification.

Behavior:

Precondition Postcondition

stateSystem_Mode=Normal state_System_Mode=Emergency
OR state._SystemMode=r Mode=Emergency

App.4.9.2 ResetSOS Operation

Usage Constraints: None.

Undesired Events: None.

149

Appndwi HAS Buoy Cam Stdy

Effects: The value of the abstract state is Normal.

Requirements Traceability:

eventResetSOS

FORMAL DESCRIPTION

Parameters: None.

Results: No result is returned.

Abbreviations: See class specification.

Behavior:

Precondition Postcondition

stateSystem_Mode=Normal stateSystemMode=Normal
OR stateý_System_-Mode=Emergency

App.4.93 Current-Mode Operation

Usage Constraints: None.

Undesired Events: None.

Effects: The current value of the abstract state is returned.

Requirements Traceability:

REQRelation_forcon_Report

FORMAL DESCRIPTION

Parameters: None.

Results:

resultCurrentMode (value of -modeSystem_Mode)

Abbreviations: See class specification.

Behavior:

Precondition . Postcondition

TRUE resultCurrent_Mode=stateSystem_.Mode

App.4.10 Buoy Loc.AnoN COMPUTAION CLASS

Name: BuoyLocation Computation Class

ISO

Appcndiw HAS Buoy Cae Study

Abstraction: Computation class encapsulating the algorithm to derive
-monBuoy.Location (i.e., current buoy location) from
-mon.0OmegaError and inOmega_SystemnInput

Hidden Information: Details of the algorithm

Anticipated Changes:

Internal representation of intermediate results

Required precision

Requirements Traceability:

IN_Relation_formon_BuoyLocation

Object(s)

Buoy_Location Computation object

FORMAL DESCRIPTION

Abstract State: This class has no abstract state.

Abbreviations: None.

Invariants: There are no invariants

Initial Value of Abstract State: Not applicable

App.4.10.1 EstimateABuoyJocation Operation

Usage Constraints: The sooner this operation is called after retriev-
ing inOmegaSystem._Input, the more precise the result will be.

Undesired Events: None.

Effects: The calculated value of -monBuoy__Location is returned.

Requirements Traceability:

IN_Relationformon_BuoyLocation

FORMAL DESCRIPTION

Parameters:

param_OmegaError (value of -mon_.OmegaError)

paramOmegaInput (value of in_omegaSystem__Input)

Results:

151

Appeadix: HAS Buoy Cae Study

resultBuoyjLocation (calculated value of -monBuoyLocation)

Abbreviations: See class specification.

Behavior:

Precondition Postcondition

TRUE result_BuoyLocation =
paramOmegaInput - paramOmegaError

Maximum Error: 0.01 km

App.4.11 WATERJmPEATUm COMPUTATION CLAss

Name: WaterTemperature Computation class

Abstraction: Computation class which encapsulates the algorithm for
converting the value of in_Water_TemperatureSensor to an
approximation of mon_WaterTemperature.

Hidden Information: Details of the conversion algorithm.

Anticipated Changes: The current version of the Buoy has a single
sensor for water temperature. In the future, the number of water tem-
peratures could change. For this reason, the conversion of
in_Water_Temperature..Sensor to an approximation of
monWater_Temperature is encapr•ilated in a class separate from the
WaterTemperature_Sensor device interface class.

Requirements Traceability:

monWaterTemperature

INRelationfor_WaterTemperature

Object(s) WaterTemperature Computation object

FORMAL DESCRIPTION

Abstract State: This class has no abstract state.

Abbreviations: None.

Invariants: There are no invariants

Initial Value of Abstract State: Not applicable

AppA.11.1 Calculate.Water.Temperature Operation

Usage Constraints: The value of the parameter to this operation must
be in the range [-128 .. 127]

1552

Appendix: HAS Bu& Case Study

Undesired Events: An error is returned if the usage constraint is
violated.

Effects: Given a value of in_WaterTemperature_Sensor, this opera-
tion returns an approximation of monWaterTemperature.

Requirements Traceability:

monWater._Temperature

IN_Relation_for_Water_Temperature

FORMAL DESCRIPTION

Parameters:

paramWaterTemperature_Sensor (value of
inWaterTemperatureSensor)

Results:

resultWaterTemperature (value of -monWaterTemperature)

Abbreviations:

Abbreviation Definition

ValidParameter -128 <= paramWaterTemperatureSensor <= 127

Behavior:

Precondition Postcondition

ValidParameter result_WaterTemperature=
-mon_WaterTemperature as defined in
IN'_for_Mon_WaterTemperature

Maximum Error: 0

NOT(Valid.Parameter) ERROR(Invalid Parameter)

App.4.12 WIND COMPUTATON CLASS

Name: Wind Computation Class

Abstraction: Computation class which encapsulates the algorithms for
deriving approximations of wind direction and magnitude given the
values read from the North, South, East, and West wind sensors. The
algorithms are grouped into a single class because the functions they
compute have several mathematical terms in common, implying that the
algorithms will change together.

153

Appendw HAS Buoy Case Study

Anticipated Changes: Change to one or both algorithms.

Requirements Traceability:

IN_Relation_forWind

termWindVector

Object(s) Wind Computation object

FORMAL DESCRIPTION

Abstract State: This class has no abstract state.

Abbreviations: The abbreviations below are defined in terms of
parameters to the two operations exported by this class.

Abbreviation Definition

Sensor_Values_Non_Negative param.WindSensors.North >= 0
AND param.WindSensors.South >= 0
AND paramWindSensors.East >= 0
AND paramnWind_Sensors.West >= 0

X_Axis_Values_Consistent param_WindSensors.East = 0
OR param_Wind_Sensors.West = 0

Y_Axis_Values_Consistent paramWindSensors.North = 0
OR paramWindSensors.South = 0

Valid-Input Sensor_Values_Non_Negative
AND X_Axis_Values_Consistent
AND Y_Axis_ValuesConsistent

WindVelocity_XAxis IF WindSensors.East>=0
THEN param_WindSensors.East
ELSE param_Wind_Sensors.West

WindVelocityj._Axis IF Wind_Sensors.North>=O
THEN param_Wind_Sensors.North
ELSE param_WindSensors.South

Invariants: There are no invariants

Initial Value of Abstract State: Not applicable

App.4.12.1 CalculateWmdDirection Operation

Usage Constraints: The wind sensor readings must be non-negative. The
north and south sensor values cannot be positive at the same time.
The east and west sensor values cannot be positive at the same time.
See the abbreviation Valid.Input in the class specification.

Undesired Events: An error condition is returned if the usage
constraint is violated. See Postcondition for NOT (Valid-Input)
below.

154

Appendix: HAS Buoy Case Study

Effects: Given the four Wind Sensor values read from the four wind
sensors, this operation returns an approximation of the Wind
Direction monitored variable.

Requirements Traceability:

INRelationfor_Wind

termWindVector

FORMAL DESCRIPTION

Parameters:

param_WindSensor.North

param_WindSensor. South

paramWindSensor.East

param_WindSensor.West

Results:

result_WindDirection (value of -monWindDirection)

Abbreviations:

Abbreviation Definition

MAGNITUDE Calculate_WindMagnitude
(param_WindSensor.North,
param_.WindSensor. South,
paramWindSensor. East,
paramWindSensor.West)

ARC_COS Trigonometric functions computation
class.arccos

Behavior:

Precondition Postcondition

Valid.Input result_WindDirection=
ARC_COS(Wind.VelocityX_Axis/MAGNITUDE)

Maximum Error: 1 degree of angle

INOT (Valid_Input) ERROR (invalid parameters)

App.4.122 CalculateWindMagnitude Operation

Name: CalculateWindMagnitude

155

Aendý i HAS Buov Cast Study

Usage Constraints: See CalculateWindDirection

Undesired Events: An exception is returned if the usage constraint
is violated. See the second postcondition below.

Effects: Given the four Wind Sensor values read from the four wind
sensors, this operation returns an approximation of the Wind
Magnitude monitored variable.

Requirements Traceability:

IN_Relation for_Wind

term_WindVector

FORMAL DESCRIPTION

Parameters-

param_WindSensox.North

param_WindSensor. South

paramWindSensor.East

paramWindSensor.West

Results:

result_Wind.Magnitude (Approximation of monitored variable)

Abbreviations: See class specification.

Behavior:

Precondition Postcondition

ValidInput result_WindMagnitude =

SQRT(WindVelocityX_Axis**2
+ WindVeLocityYAxis**2)

Maximum Error: 0.5 knot

NOT (Valid.Input) Exception (invalid parameters)

App.4.13 TRIGoNoMErcICFuNCTIONS COMPUTATION CLASS

Name: Trigonometric_Functions Computation Class

Abstraction: Computation class which hides algorithms for common
mathematical functions from trigonometric.

Hidden Information: Details of the algorithms

156

Appendix: HAS Buoy Case Study

Anticipated Changes:

Precision of the algorithms

Requirements Traceability:

mon_WindMagnitude

mon_WindDirection

Object(s): Trigonometric_Functions Computation object

FORMAL DESCRIPTION

Abstract State: This class has no abstract state.

Abbreviations: None.

Invariants: There are no invariants

Initial Value of Abstract State. Not applicable

Operation(s): Some of the operations listed are not required by the
HAS-Buoy application.. However, this class will include a complete set
of trigonometric operations so that it can be reused in other
applications.

cos arc cos

sin arc sin

tan arc tan

157

Appendix HAS Buoy Casc Study

This page intentionally left blank

i.5

LIST OF ABBREVIATIONS AND ACRONYMS

ADARTS Ada-based Design Approach for Real-Time Systems

CoRE Consortium Requirements Engineering

DDE data dictionary entries

FIFO first-in, first-out

GCD greatest common divisor

HAS host-at-sea

IN input

mph miles per hour

ms millisecond

NAT nature

OUT output

PAT process activation table

REQ required

RTSA real-time structured analysis

s stimulus

sec second

SEM state-event matrix

t translation

159

LW of Abbreviations and Acronyms

Thspage intentionally left blank

160

REFERENCES

Cadre Technologies, Inc. Teamwork/SA and teamwork/RT User's Guide. Providence,
1990 Rhode Island: Cadre Technologies, Inc.

Gries, David The Science of Programming. New York, New York:
1981 Springer-Verlag.

Kirk, Richard A., and Fred Using Teamwork Version 4. OforADARTS Version20. Providence,
Wild Rhode Island: Cadre Technologies, Inc.
1992

Knuth, Donald E. The Art of Computer Programming VoL 2 Seminumerical
1981 Algorithms. Second Edition. Reading, Massachusetts:

Addison-Wesley.

Naval Research Laboratory Software Engineering Principles. Washington, D.C.: Naval
1980 Research Laboratory.

Software Productivity ADARTS Guidebook, SPC-94040-CMC, version 02.00.13.
Consortium Herndon, Virginia: Software Productivity Consortium.
1991

1993 Consortium Requirements Engineering Guidebook
SPC-92060-CMC, version 01.00.09. Herndon, Virginia:
Software Productivity Consortium.

161

Rderecm

This page intentionally left blank,

162

